from sklearn.datasets import load_iris# sklearn에 내장되어있는 iris 데이터를 사용
iris =load_iris()
print(iris.DESCR)# iris dataset 정보를 알 수 있다
feature에는 sepal length, sepal width, petal length, petal width가 있다.
target은 3개의 class가 있으며 각각 Iris-Setosa, Iris-Versicolour, Iris-Virginica, 즉, 붖꽃의 종류이다.
Setosa, Versicolour, Virginica가 각각 0, 1, 2로 분류 되어있다.
총 150개의 instance가 존재한다.
Iris Plants Database
====================
Notes
-----
Data Set Characteristics:
:Number of Instances: 150 (50 in each of three classes)
:Number of Attributes: 4 numeric, predictive attributes and the class
:Attribute Information:
- sepal length in cm
- sepal width in cm
- petal length in cm
- petal width in cm
- class:
- Iris-Setosa
- Iris-Versicolour
- Iris-Virginica
:Summary Statistics:
============== ==== ==== ======= ===== ====================
Min Max Mean SD Class Correlation
============== ==== ==== ======= ===== ====================
sepal length: 4.3 7.9 5.84 0.83 0.7826
sepal width: 2.0 4.4 3.05 0.43 -0.4194
petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)
petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)
============== ==== ==== ======= ===== ====================
:Missing Attribute Values: None
:Class Distribution: 33.3% for each of 3 classes.
:Creator: R.A. Fisher
:Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
:Date: July, 1988
This is a copy of UCI ML iris datasets.
http://archive.ics.uci.edu/ml/datasets/Iris
The famous Iris database, first used by Sir R.A Fisher
This is perhaps the best known database to be found in the
pattern recognition literature. Fisher's paper is a classic in the field and
is referenced frequently to this day. (See Duda & Hart, for example.) The
data set contains 3 classes of 50 instances each, where each class refers to a
type of iris plant. One class is linearly separable from the other 2; the
latter are NOT linearly separable from each other.
References
----------
- Fisher,R.A. "The use of multiple measurements in taxonomic problems"
Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to
Mathematical Statistics" (John Wiley, NY, 1950).
- Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.
(Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.
- Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
Structure and Classification Rule for Recognition in Partially Exposed
Environments". IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. PAMI-2, No. 1, 67-71.
- Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE Transactions
on Information Theory, May 1972, 431-433.
- See also: 1988 MLC Proceedings, 54-64. Cheeseman et al"s AUTOCLASS II
conceptual clustering system finds 3 classes in the data.
- Many, many more ...
Make DataFrame
# feature와 target를 하나의 DataFrame으로 만들고 각각의 column명을 붙여주었다.df = pd.DataFrame(iris.data, columns = iris.feature_names)y = pd.Series(iris.target, dtype="category")y = y.cat.rename_categories(iris.target_names)df['species']= y
df.head()
EDA
df.describe()
df.groupby('species').size()
각 Class 별로 data가 50개씩 존재한다.
species
setosa 50
versicolor 50
virginica 50
dtype: int64
Pairplot
sns.pairplot(df, hue="species")plt.show()
petal length 만으로 0과 1종을 완전히 구분할 수 있다
petal length와 petal width 두가지로 나누면 1과 2종도 구분해 낼 수 있을 것으로 보인다
Best Parameters : {'metric': 'euclidean', 'n_neighbors': 16, 'weights': 'distance'}
Best Score : 0.9732142857142857
Best Test Score : 0.9473684210526315