from sklearn.datasets import load_iris# sklearn에 내장되어있는 iris 데이터를 사용
iris =load_iris()
print(iris.DESCR)# iris dataset 정보를 알 수 있다
feature에는 sepal length, sepal width, petal length, petal width가 있다.
target은 3개의 class가 있으며 각각 Iris-Setosa, Iris-Versicolour, Iris-Virginica, 즉, 붖꽃의 종류이다.
Setosa, Versicolour, Virginica가 각각 0, 1, 2로 분류 되어있다.
총 150개의 instance가 존재한다.
Iris Plants Database
====================
Notes
-----
Data Set Characteristics:
:Number of Instances: 150 (50 in each of three classes)
:Number of Attributes: 4 numeric, predictive attributes and the class
:Attribute Information:
- sepal length in cm
- sepal width in cm
- petal length in cm
- petal width in cm
- class:
- Iris-Setosa
- Iris-Versicolour
- Iris-Virginica
:Summary Statistics:
============== ==== ==== ======= ===== ====================
Min Max Mean SD Class Correlation
============== ==== ==== ======= ===== ====================
sepal length: 4.3 7.9 5.84 0.83 0.7826
sepal width: 2.0 4.4 3.05 0.43 -0.4194
petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)
petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)
============== ==== ==== ======= ===== ====================
:Missing Attribute Values: None
:Class Distribution: 33.3% for each of 3 classes.
:Creator: R.A. Fisher
:Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
:Date: July, 1988
This is a copy of UCI ML iris datasets.
http://archive.ics.uci.edu/ml/datasets/Iris
The famous Iris database, first used by Sir R.A Fisher
This is perhaps the best known database to be found in the
pattern recognition literature. Fisher's paper is a classic in the field and
is referenced frequently to this day. (See Duda & Hart, for example.) The
data set contains 3 classes of 50 instances each, where each class refers to a
type of iris plant. One class is linearly separable from the other 2; the
latter are NOT linearly separable from each other.
References
----------
- Fisher,R.A. "The use of multiple measurements in taxonomic problems"
Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to
Mathematical Statistics" (John Wiley, NY, 1950).
- Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.
(Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.
- Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
Structure and Classification Rule for Recognition in Partially Exposed
Environments". IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. PAMI-2, No. 1, 67-71.
- Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE Transactions
on Information Theory, May 1972, 431-433.
- See also: 1988 MLC Proceedings, 54-64. Cheeseman et al"s AUTOCLASS II
conceptual clustering system finds 3 classes in the data.
- Many, many more ...
Make DataFrame
# feature와 target를 하나의 DataFrame으로 만들고 각각의 column명을 붙여주었다.df = pd.DataFrame(iris.data, columns = iris.feature_names)y = pd.Series(iris.target, dtype="category")y = y.cat.rename_categories(iris.target_names)df['species']= y
df.head()
sepal length (cm)
sepal width (cm)
petal length (cm)
petal width (cm)
species
0
5.1
3.5
1.4
0.2
setosa
1
4.9
3.0
1.4
0.2
setosa
2
4.7
3.2
1.3
0.2
setosa
3
4.6
3.1
1.5
0.2
setosa
4
5.0
3.6
1.4
0.2
setosa
EDA
df.describe()
sepal length (cm)
sepal width (cm)
petal length (cm)
petal width (cm)
count
150.000000
150.000000
150.000000
150.000000
mean
5.843333
3.054000
3.758667
1.198667
std
0.828066
0.433594
1.764420
0.763161
min
4.300000
2.000000
1.000000
0.100000
25%
5.100000
2.800000
1.600000
0.300000
50%
5.800000
3.000000
4.350000
1.300000
75%
6.400000
3.300000
5.100000
1.800000
max
7.900000
4.400000
6.900000
2.500000
df.groupby('species').size()
각 Class 별로 data가 50개씩 존재한다.
species
setosa 50
versicolor 50
virginica 50
dtype: int64
Pairplot
sns.pairplot(df, hue="species")plt.show()
petal length 만으로 0과 1종을 완전히 구분할 수 있다
petal length와 petal width 두가지로 나누면 1과 2종도 구분해 낼 수 있을 것으로 보인다
Best Parameters : {'metric': 'euclidean', 'n_neighbors': 16, 'weights': 'distance'}
Best Score : 0.9732142857142857
Best Test Score : 0.9473684210526315