클러스터링 실습 (2)(EDA,Sklearn)
Assignment 3
- Clustering 해보기
Load Dataset
# data
import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings("ignore")
# visualization
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
# preprocessing
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.decomposition import PCA
from sklearn.model_selection import train_test_split
# model
from sklearn.cluster import KMeans
from sklearn.cluster import DBSCAN
from scipy.cluster.hierarchy import dendrogram, ward
from sklearn.cluster import AgglomerativeClustering
from sklearn.cluster import AffinityPropagation
from sklearn.cluster import MeanShift, estimate_bandwidth
# grid search
from sklearn.model_selection import GridSearchCV
# evaluation
from sklearn.metrics.cluster import silhouette_score
from sklearn.model_selection import cross_val_score
from sklearn import metrics
from sklearn.metrics import *EDA
Describe
Visualization



Modeling
PCA
1. K-Means


2. DBScan










3. Hierarchical agglomerative clustering

4. Agglomerative Clustering





5. Affinity Propagation

6. Mean Shift



Evaluation
No Scaled Data

Scaled Data

Last updated