Advanced Neural Net (3)

13기 이예지

이예지님은 적은 데이터셋에서 효과적인 Transfer learning을 구현하셨다는 점에서 아주 높은 점수를 드렸습니다. 미리 학습된 MNIST Weight로 초기화 후 학습을 진행하셨는데 해당 데이터셋이 다른 나라 언어의 숫자라는 점을 감안했을 때 아주 적절한 접근법이 아니었나 생각합니다. 또 Multi GPU를 사용하셨던 점도 아주 멋있었습니다.

In [1]:

import numpy as np
import pandas as pd
import torch
from torch.autograd import Variable as Variable
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.model_zoo as model_zoo
from torch.optim import lr_scheduler
from collections import OrderedDict
import torchvision
from torch.utils.data import DataLoader, Dataset
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import copy
import os

plt.ion()

In [2]:

In [3]:

Out[3]:

In [4]:

In [5]:

Out[5]:

Unnamed: 0

pixel0

pixel1

pixel2

pixel3

pixel4

pixel5

pixel6

pixel7

pixel8

...

pixel774

pixel775

pixel776

pixel777

pixel778

pixel779

pixel780

pixel781

pixel782

pixel783

0

57808

0

0

0

0

0

0

0

0

0

...

0

0

0

0

0

0

0

0

0

0

1

4960

0

0

0

0

0

0

0

0

0

...

0

0

0

0

0

0

0

0

0

0

2

35755

0

0

0

0

0

0

0

0

0

...

0

0

0

0

0

0

0

0

0

0

3

15543

0

0

0

0

0

0

0

0

0

...

0

0

0

0

0

0

0

0

0

0

4

48968

0

0

0

0

0

0

0

0

0

...

0

0

0

0

0

0

0

0

0

0

5 rows × 785 columnsIn [6]:

Out[6]:

In [7]:

In [8]:

In [10]:

In [11]:

In [12]:

In [13]:

In [14]:

In [15]:

In [16]:

In [17]:

모델 설명

MINIST로 학습된 pretrained 모델을 불러와서 fine tunning을 해보자. MLP로 구축된 모델로, MINIST에서 약 98%의 정확도를 보여줌.

http://ml.cs.tsinghua.edu.cn/~chenxi/pytorch-models/mnist-b07bb66b.pth' 에 저장되어 있는 weight을 가져와서 layer에 initailization.In [18]:

In [19]:

  • 초기화된 parameters 확인

In [20]:

In [21]:

In [24]:

In [23]:

In [26]:

In [27]:

Out[27]:

Unnamed: 0

pixel0

pixel1

pixel2

pixel3

pixel4

pixel5

pixel6

pixel7

pixel8

...

pixel774

pixel775

pixel776

pixel777

pixel778

pixel779

pixel780

pixel781

pixel782

pixel783

0

57808

0

0

0

0

0

0

0

0

0

...

0

0

0

0

0

0

0

0

0

0

1

4960

0

0

0

0

0

0

0

0

0

...

0

0

0

0

0

0

0

0

0

0

2

35755

0

0

0

0

0

0

0

0

0

...

0

0

0

0

0

0

0

0

0

0

3

15543

0

0

0

0

0

0

0

0

0

...

0

0

0

0

0

0

0

0

0

0

4

48968

0

0

0

0

0

0

0

0

0

...

0

0

0

0

0

0

0

0

0

0

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

17995

53718

0

0

0

0

0

0

0

0

0

...

0

0

0

0

0

0

0

0

0

0

17996

78

0

0

0

0

0

0

0

0

0

...

0

0

0

0

0

0

0

0

0

0

17997

33373

0

0

0

0

0

0

0

0

0

...

0

0

0

0

0

0

0

0

0

0

17998

36134

0

0

0

0

0

0

0

0

0

...

0

0

0

0

0

0

0

0

0

0

17999

54021

0

0

0

0

0

0

0

0

0

...

0

0

0

0

0

0

0

0

0

0

18000 rows × 785 columnsIn [50]:

In [51]:

Out[51]:

In [52]:

In [57]:

In [61]:

In [65]:

Last updated

Was this helpful?