📔
Tobigs
  • Who we are
  • Machine Learning
    • 데이터 전처리와 시각화
    • KNN을 통한 Parameter Tuning
    • Navie Bayes 방법론
    • 앙상블
    • 회귀분석
      • 선형 회귀분석 구현(Sklearn,Numpy) (1)
      • 선형 회귀분석 구현(Sklearn,Numpy) (2)
    • 로지스틱 회귀분석
      • Gradient Decent를 이용한 로지스틱 회귀 구현 (1)
      • Gradient Decent를 이용한 로지스틱 회귀 구현 (2)
    • 클러스터링 (군집분석)
      • 클러스터링 실습 (1) (EDA,Sklearn)
      • 클러스터링 실습 (2)(EDA,Sklearn)
      • 클러스터링 연구 (DigDeep)
    • 의사결정나무 (Decision Tree) 구현
      • Python을 이용한 Decision Tree (1)
      • Python을 이용한 Decision Tree (2)
      • Python을 이용한 Decision Tree (3)
      • Python을 이용한 Decision Tree (4)
    • 서포트 벡터 머신(SVM) 방법론
      • Python을 이용한 SVM (1)
      • Python을 이용한 SVM (2)
    • 차원 축소
      • Python을 이용한 차원 축소 실습 (1)
      • Python을 이용한 차원 축소 실습 (2)
    • 머신러닝 실습
      • Python을 이용한 실전 머신러닝 (1)
      • Python을 이용한 실전 머신러닝 (2)
  • Deep Learning
    • 신경망 기초
      • Neural Net Basic (1)
      • Neural Net Basic (2)
    • 신경망 심화
      • Advanced Neural Net (1)
      • Advanced Neural Net (2)
      • Advanced Neural Net (3)
    • 자연어 처리(NLP)
      • Natural Language Processing Basic
    • 이미지 처리(Computer Vision)
      • CNN Alexnet
      • (ResNet)Deep Residual Learning for Image Recognition 논문 리뷰
      • (GAN)Generative Adversarial Nets 논문 리뷰
    • 강화학습 (Reinforcement Learning)
      • Reinforcement Learning(1)
      • Reinforcement Learning(2)
  • Etc
    • Class와 객체지향프로그래밍(Python)
      • Python을 이용한 객체 지향 프로그래밍 (1)
      • Python을 이용한 객체 지향 프로그래밍 (2)
    • Crawling
Powered by GitBook
On this page

Was this helpful?

  1. Deep Learning
  2. 신경망 심화

Advanced Neural Net (3)

13기 이예지

이예지님은 적은 데이터셋에서 효과적인 Transfer learning을 구현하셨다는 점에서 아주 높은 점수를 드렸습니다. 미리 학습된 MNIST Weight로 초기화 후 학습을 진행하셨는데 해당 데이터셋이 다른 나라 언어의 숫자라는 점을 감안했을 때 아주 적절한 접근법이 아니었나 생각합니다. 또 Multi GPU를 사용하셨던 점도 아주 멋있었습니다.

In [1]:

import numpy as np
import pandas as pd
import torch
from torch.autograd import Variable as Variable
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.model_zoo as model_zoo
from torch.optim import lr_scheduler
from collections import OrderedDict
import torchvision
from torch.utils.data import DataLoader, Dataset
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import copy
import os

plt.ion()

In [2]:

train = pd.read_csv("train_df.csv")

In [3]:

train.shape

Out[3]:

(42000, 785)

In [4]:

test = pd.read_csv("test_df.csv")

In [5]:

test.head()

Out[5]:

Unnamed: 0

pixel0

pixel1

pixel2

pixel3

pixel4

pixel5

pixel6

pixel7

pixel8

...

pixel774

pixel775

pixel776

pixel777

pixel778

pixel779

pixel780

pixel781

pixel782

pixel783

0

57808

0

0

0

0

0

0

0

0

0

...

0

0

0

0

0

0

0

0

0

0

1

4960

0

0

0

0

0

0

0

0

0

...

0

0

0

0

0

0

0

0

0

0

2

35755

0

0

0

0

0

0

0

0

0

...

0

0

0

0

0

0

0

0

0

0

3

15543

0

0

0

0

0

0

0

0

0

...

0

0

0

0

0

0

0

0

0

0

4

48968

0

0

0

0

0

0

0

0

0

...

0

0

0

0

0

0

0

0

0

0

5 rows × 785 columnsIn [6]:

test.shape

Out[6]:

(18000, 785)

In [7]:

X = train.iloc[:,1:]

In [8]:

X = X / 255

In [10]:

Y =train.iloc[:,0]

In [11]:

from sklearn.model_selection import train_test_split
X_train,X_val,Y_train,Y_val = train_test_split(X, Y, train_size=0.85,random_state=10, stratify = train.label)

In [12]:

pd.DataFrame(pd.concat([X_train,Y_train],axis=1)).to_csv("train.csv", index =False)

In [13]:

pd.DataFrame(pd.concat([X_val,Y_val],axis=1)).to_csv("val.csv", index = False)

In [14]:

from torch.utils.data import DataLoader

In [15]:

class BengaliDataset(Dataset):
    def __init__(self, csv, transform=None):
#         super(BengaliDataset, self).__init__(transform=transform)
        self.csv = pd.read_csv(csv)
        self.image_ids = self.csv.index
        self.transform = transform
        
    def __len__(self):
        return len(self.csv)
    
    def __getitem__(self, index):
        image = self.csv.iloc[index,:-1]   
        label = self.csv.iloc[index,-1]         
        return (torch.tensor(image, dtype=torch.float), torch.tensor(label, dtype=torch.long))

In [16]:

trainset = BengaliDataset("train.csv")
valset = BengaliDataset("val.csv")

In [17]:

train_loader = DataLoader(trainset,batch_size = 128, shuffle= True)
test_loader = DataLoader(valset,batch_size = 128, shuffle= True) # validation

모델 설명

MINIST로 학습된 pretrained 모델을 불러와서 fine tunning을 해보자. MLP로 구축된 모델로, MINIST에서 약 98%의 정확도를 보여줌.

class YEJI(nn.Module):
    def __init__(self, input_dims, n_hiddens, n_class):
        super(YEJI, self).__init__()
        self.input_dims = input_dims
        current_dims = input_dims
        layers = OrderedDict()

        if isinstance(n_hiddens, int):
            n_hiddens = [n_hiddens]
        else:
            n_hiddens = list(n_hiddens)
        for i, n_hidden in enumerate(n_hiddens):
            layers['fc{}'.format(i+1)] = nn.Linear(current_dims, n_hidden)
            layers['relu{}'.format(i+1)] = nn.ReLU()
            layers['drop{}'.format(i+1)] = nn.Dropout(0.2)
            current_dims = n_hidden
        layers['out'] = nn.Linear(current_dims, n_class)

        self.model= nn.Sequential(layers)
        print(self.model)

    def forward(self, input):
        return self.model.forward(input)

def TOBIGS(input_dims=784, n_hiddens=[256, 256], n_class=10):
    model = YEJI(input_dims, n_hiddens, n_class)
    model_urls = {'mnist': 'http://ml.cs.tsinghua.edu.cn/~chenxi/pytorch-models/mnist-b07bb66b.pth'}
    m = model_zoo.load_url(model_urls['mnist'])
    state_dict = m.state_dict() if isinstance(m, nn.Module) else m
    assert isinstance(state_dict, (dict, OrderedDict)), type(state_dict)

    model.load_state_dict(state_dict)
    return model

In [19]:

model = TOBIGS(input_dims=784, n_hiddens=[256, 256], n_class=10)
model = torch.nn.DataParallel(model)
model.cuda()

# optimizer
optimizer = optim.Adam(model.parameters(), lr=0.0001)
Sequential(
  (fc1): Linear(in_features=784, out_features=256, bias=True)
  (relu1): ReLU()
  (drop1): Dropout(p=0.2, inplace=False)
  (fc2): Linear(in_features=256, out_features=256, bias=True)
  (relu2): ReLU()
  (drop2): Dropout(p=0.2, inplace=False)
  (out): Linear(in_features=256, out_features=10, bias=True)
)
  • 초기화된 parameters 확인

In [20]:

for i in model.parameters():
    print(i)
Parameter containing:
tensor([[ 0.0008,  0.0228, -0.0091,  ...,  0.0253,  0.0081,  0.0273],
        [-0.0286, -0.0235,  0.0097,  ..., -0.0235, -0.0198,  0.0118],
        [-0.0265,  0.0142, -0.0108,  ..., -0.0061,  0.0135, -0.0146],
        ...,
        [ 0.0200, -0.0206,  0.0216,  ...,  0.0163, -0.0218, -0.0243],
        [-0.0293, -0.0149, -0.0179,  ...,  0.0208,  0.0032, -0.0182],
        [ 0.0217, -0.0209, -0.0171,  ...,  0.0146, -0.0300, -0.0282]],
       device='cuda:0', requires_grad=True)
Parameter containing:
tensor([-2.4047e-02, -2.2005e-02, -2.2303e-02,  1.4438e-02, -3.4430e-02,
         2.8466e-02, -3.1873e-03, -3.6541e-02, -3.6213e-02,  9.2949e-03,
        -2.6346e-03, -1.6759e-03, -2.0798e-02,  1.2568e-02, -2.7282e-02,
        -2.4870e-02,  1.2711e-02,  9.0569e-03,  3.1330e-02,  7.8664e-03,
        -9.7114e-03, -5.3195e-03,  6.5779e-03,  4.8497e-03, -1.6000e-02,
         3.4190e-02, -4.3266e-02, -5.3593e-03, -2.5096e-02, -3.0591e-02,
         8.3767e-03,  2.1216e-02, -2.9671e-02, -7.8996e-03, -1.8832e-02,
        -7.9895e-03, -3.5005e-02,  4.6001e-03, -3.0195e-02, -1.5548e-02,
         9.0775e-03,  3.9423e-03,  7.6245e-03, -2.4586e-02,  1.0790e-02,
        -1.0323e-02,  1.1045e-02,  1.2789e-02, -3.0072e-04, -2.8499e-02,
         6.4666e-03, -2.9852e-02,  1.4125e-02, -1.6594e-02,  6.3288e-03,
        -1.6894e-02,  5.1220e-03,  1.8933e-02,  1.5366e-02, -2.9347e-02,
        -1.1315e-02,  1.2771e-02, -3.2746e-02,  2.7133e-02,  3.4820e-02,
         3.0464e-02, -1.8612e-02, -3.2126e-03, -2.1233e-02,  1.5723e-02,
        -3.5695e-05, -2.1798e-02,  1.0757e-02, -8.8188e-03,  1.3110e-02,
        -1.2492e-02,  4.2519e-03,  1.6891e-02, -1.5040e-02, -2.3597e-02,
         2.0468e-02,  3.2935e-03, -2.0889e-02,  2.4569e-02, -2.2651e-02,
        -2.1116e-04,  2.1280e-02,  3.2295e-04, -8.9682e-03, -4.0092e-02,
        -3.0855e-02, -1.0467e-02,  9.4466e-03, -3.8804e-02,  1.5002e-02,
         2.4770e-02, -7.8084e-03, -1.8451e-02,  1.0416e-02, -2.5319e-02,
        -4.2388e-02,  1.8064e-02, -4.1148e-02, -2.9811e-02,  1.3386e-02,
         1.8480e-02,  2.1262e-02, -3.4661e-02,  2.7737e-02, -1.1734e-02,
         2.6220e-02,  3.1765e-03, -2.8184e-02,  4.4263e-03,  1.5305e-02,
        -4.6155e-02, -1.3197e-02, -1.2637e-02, -3.0189e-02, -1.1002e-02,
         1.8911e-02, -3.8687e-02, -4.3054e-02,  2.5530e-03,  1.9009e-02,
        -8.4420e-03, -3.6937e-02,  1.8721e-02, -1.0126e-02, -2.6734e-02,
        -1.3540e-03, -1.9280e-02,  2.0742e-02, -1.8495e-02, -1.6875e-02,
        -6.6733e-03,  1.3776e-03,  1.0932e-02, -1.4752e-02,  9.7348e-03,
         2.8777e-02, -1.5682e-02, -3.4459e-02, -1.8782e-02, -7.4416e-03,
        -2.5713e-02, -2.4026e-02, -1.7687e-03, -2.8796e-02,  1.5466e-02,
        -3.7697e-03,  1.4316e-02,  1.9834e-03, -1.1406e-02,  7.3962e-03,
         2.4126e-02,  5.4612e-03,  3.5611e-02,  1.5196e-02, -2.2867e-02,
        -2.4045e-02,  1.6837e-02, -1.0262e-02, -3.2728e-02, -8.5198e-03,
        -1.0734e-03, -2.9398e-02, -1.0442e-02,  8.1003e-04, -3.7155e-03,
         4.0094e-03,  4.0704e-03, -2.4243e-02,  1.2542e-02, -1.5670e-02,
         2.5404e-02, -1.4243e-02, -1.1428e-03,  2.0786e-02, -1.3553e-03,
        -1.3778e-02, -4.2928e-02, -3.0567e-02, -2.5173e-02, -2.2701e-02,
        -2.9227e-02, -3.4862e-02,  8.3792e-03,  3.9899e-03,  2.0852e-02,
        -2.6710e-02,  2.9947e-03, -1.2336e-02, -1.9209e-02,  3.1653e-02,
         1.8848e-04, -1.8542e-02,  2.3055e-02, -7.9647e-03,  5.5250e-04,
        -1.8495e-02,  1.4255e-03, -3.7941e-02,  3.8953e-03,  1.1587e-02,
         2.8674e-03,  2.6969e-03, -3.2376e-03,  2.8830e-02, -3.1154e-02,
        -9.4864e-03,  1.0743e-03, -1.5431e-02,  2.0880e-03, -1.3650e-02,
        -2.2170e-03, -6.5047e-03,  1.3019e-02, -7.6229e-03,  1.3460e-02,
         3.9254e-03, -2.5288e-02,  1.1412e-02, -6.7232e-03, -1.0537e-02,
         1.5495e-02,  1.7443e-02, -3.1923e-02,  9.8591e-03,  1.9909e-02,
        -2.5034e-02,  2.2137e-02, -1.4152e-03, -5.2964e-03, -8.4245e-03,
        -2.6398e-02, -2.5350e-02, -2.4958e-02, -2.8014e-02, -2.3828e-02,
         1.1054e-02, -8.1813e-03,  1.9536e-02, -7.5279e-03, -2.8080e-02,
        -1.6022e-02, -3.9783e-02, -3.0921e-02, -1.2174e-02, -7.8339e-03,
        -5.0126e-03,  2.7386e-02, -6.2526e-03, -3.0314e-02, -8.6337e-03,
         2.8741e-02], device='cuda:0', requires_grad=True)
Parameter containing:
tensor([[ 1.9542e-02, -3.2533e-03, -7.2425e-02,  ..., -3.2647e-02,
          7.4259e-02, -2.6186e-03],
        [-4.1125e-02, -2.1811e-02,  1.8511e-02,  ...,  5.0171e-02,
         -5.5135e-02, -1.1747e-01],
        [ 9.3704e-02,  2.1296e-02,  3.3339e-02,  ..., -1.4726e-02,
         -5.8037e-02,  2.1148e-02],
        ...,
        [ 5.8484e-02,  4.8540e-02,  2.9483e-02,  ..., -1.4176e-02,
          5.6538e-02,  5.0408e-02],
        [-5.8548e-03, -2.9874e-02,  5.5164e-02,  ..., -5.4204e-02,
         -2.1725e-02,  4.2473e-02],
        [-4.4845e-02,  3.9385e-02,  1.9515e-02,  ..., -3.0702e-02,
         -7.1189e-06,  1.6565e-02]], device='cuda:0', requires_grad=True)
Parameter containing:
tensor([-0.0369, -0.0105,  0.0470, -0.0358,  0.0252,  0.0292, -0.0357,  0.0050,
        -0.0146,  0.0116,  0.0585, -0.0275,  0.0239,  0.0326, -0.0049,  0.0533,
        -0.0023,  0.0557, -0.0213, -0.0502,  0.0082, -0.0247, -0.0219,  0.0222,
         0.0554, -0.0122,  0.0436,  0.0742, -0.0181, -0.0187,  0.0193, -0.0222,
        -0.0315, -0.0103,  0.0021, -0.0124, -0.0016,  0.0364,  0.0547,  0.0093,
         0.0519,  0.0061,  0.0050,  0.0540, -0.0441, -0.0013,  0.0915,  0.0354,
         0.0392,  0.0081, -0.0018,  0.0366,  0.0370,  0.0271,  0.0260, -0.0053,
         0.0132,  0.0095,  0.0481, -0.0085, -0.0357,  0.0702,  0.0712, -0.0193,
         0.0611,  0.0586,  0.0304,  0.0541,  0.0152, -0.0248,  0.0523,  0.0940,
        -0.0190, -0.0506,  0.0006, -0.0572,  0.0431,  0.0063,  0.0149,  0.0712,
        -0.0063, -0.0453,  0.0052,  0.0315,  0.0368, -0.0151, -0.0224,  0.0477,
         0.0658, -0.0129, -0.0322,  0.0105, -0.0200, -0.0141, -0.0265,  0.0474,
        -0.0477,  0.0269,  0.0038,  0.0304, -0.0145,  0.0561,  0.0351, -0.0169,
        -0.0474, -0.0043,  0.0504,  0.0061,  0.0188,  0.0682,  0.0597,  0.0012,
        -0.0277,  0.0592,  0.0079, -0.0094,  0.0075, -0.0453, -0.0046, -0.0034,
        -0.0431,  0.0621,  0.0819,  0.0207, -0.0454,  0.0175, -0.0012, -0.0134,
         0.0576, -0.0518, -0.0316, -0.0313, -0.0001,  0.0056,  0.0284,  0.0932,
         0.0119,  0.0024,  0.0026, -0.0193,  0.0641, -0.0452, -0.0179,  0.0311,
        -0.0809, -0.0019,  0.0028, -0.0674, -0.0585,  0.0062,  0.0195, -0.0106,
        -0.0225, -0.0413, -0.0158, -0.0466,  0.0014,  0.0527, -0.0142,  0.0307,
         0.0960,  0.0507,  0.0760,  0.0317,  0.0395, -0.0494,  0.0117,  0.0367,
         0.0359, -0.0155,  0.0446,  0.0224,  0.0017, -0.0083,  0.0104,  0.0040,
        -0.0607,  0.0388,  0.0656,  0.0003,  0.0344,  0.0303,  0.0206, -0.0606,
         0.0391,  0.0168,  0.0443, -0.0162,  0.0070,  0.0739, -0.0081,  0.0222,
        -0.0259,  0.0095,  0.0810, -0.0323,  0.1087,  0.0667,  0.0430, -0.0235,
         0.0338,  0.0139, -0.0014, -0.0159,  0.0461,  0.0018,  0.0160,  0.0711,
         0.0136, -0.0515,  0.0307, -0.0519,  0.0158, -0.0155, -0.0259, -0.0356,
        -0.0055,  0.0289,  0.0891,  0.0016,  0.0845,  0.0309,  0.0087,  0.0243,
         0.0331, -0.0248,  0.0007,  0.0615,  0.0419,  0.0145, -0.0420, -0.0575,
        -0.0418,  0.0458,  0.0825, -0.0384,  0.0903, -0.0284, -0.0006,  0.0496,
         0.0197, -0.0088,  0.0192,  0.0221,  0.0143,  0.0633,  0.0540,  0.0644,
        -0.0302,  0.0014,  0.0245,  0.0572,  0.0686, -0.0314,  0.0451, -0.0088],
       device='cuda:0', requires_grad=True)
Parameter containing:
tensor([[-0.0345,  0.2439, -0.1462,  ..., -0.0050, -0.0480,  0.0150],
        [ 0.1230,  0.0682,  0.0485,  ..., -0.1220,  0.1505, -0.0296],
        [-0.1156,  0.2065, -0.1886,  ...,  0.1253,  0.0123, -0.0875],
        ...,
        [-0.0858, -0.1055,  0.1441,  ...,  0.1067, -0.1549,  0.0007],
        [-0.2248, -0.1508, -0.1592,  ...,  0.0465, -0.2895,  0.1776],
        [ 0.1109,  0.0210,  0.1080,  ..., -0.0592,  0.2578, -0.0313]],
       device='cuda:0', requires_grad=True)
Parameter containing:
tensor([-0.0530, -0.0300, -0.0313,  0.0078,  0.0766, -0.1189, -0.0117, -0.0271,
         0.2031,  0.0601], device='cuda:0', requires_grad=True)

In [21]:

def expand_user(path):
    return os.path.abspath(os.path.expanduser(path))

def model_snapshot(model, new_file, old_file=None, verbose = True):
    if isinstance(model, torch.nn.DataParallel):
        model = model.module
    if old_file and os.path.exists(expand_user(old_file)):
        print("Removing old model {}".format(expand_user(old_file)))
        os.remove(expand_user(old_file))
    if verbose:
        print("Saving model to {}".format(expand_user(new_file)))

    state_dict = OrderedDict()
    for k, v in model.state_dict().items():
        if v.is_cuda:
            v = v.cpu()
        state_dict[k] = v
    torch.save(state_dict, expand_user(new_file))

In [24]:

best_acc = 0.0
old_file = None

In [23]:

for epoch in range(10):
        model.train()
        for batch_idx, (data, target) in enumerate(train_loader):
            indx_target = target.clone()
            data, target = data.cuda(), target.cuda()
            data, target = Variable(data), Variable(target)

            optimizer.zero_grad()
            output = model(data)
#             output = nn.Softmax(output)
#             loss = F.mse_loss(output, target)
            loss=F.cross_entropy(output, target)
            loss.backward()
            optimizer.step()

            if batch_idx % 10 ==0 and batch_idx > 0:
                pred = output.data.max(1)[1]  # get the index of the max log-probability
                correct = pred.cpu().eq(indx_target).sum()
                acc = correct * 1.0 / len(data)
                print('Train Epoch: {} [{}/{}] Loss: {:.6f} Acc: {:.4f}'.format(
                    epoch, batch_idx * len(data), len(train_loader.dataset),
                    loss, acc))

        model.eval()
        test_loss = 0
        correct = 0
        for data, target in test_loader:
            indx_target = target.clone()
            data, target = data.cuda(), target.cuda()
            data, target = Variable(data, volatile=True), Variable(target)
            output = model(data)
            test_loss += F.cross_entropy(output, target)
            pred = output.data.max(1)[1]
            correct += pred.cpu().eq(indx_target).sum()

        test_loss = test_loss / len(test_loader) 
        acc = 100. * correct / float(len(test_loader.dataset))
        print('\tTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format(
            test_loss, correct, len(test_loader.dataset), acc))
        
        if acc > best_acc:
            new_file = os.path.join('./', 'best-{}.pth'.format(epoch))
            model_snapshot(model, new_file, old_file=old_file)
            best_acc = acc
            old_file = new_file
C:\Users\fdal\Miniconda3\envs\torch\lib\site-packages\torch\cuda\nccl.py:24: UserWarning: PyTorch is not compiled with NCCL support
  warnings.warn('PyTorch is not compiled with NCCL support')
Train Epoch: 0 [1280/35700] Loss: 2.411509 Acc: 0.2500
Train Epoch: 0 [2560/35700] Loss: 2.049485 Acc: 0.3281
Train Epoch: 0 [3840/35700] Loss: 1.733531 Acc: 0.3828
Train Epoch: 0 [5120/35700] Loss: 1.725729 Acc: 0.4453
Train Epoch: 0 [6400/35700] Loss: 1.459448 Acc: 0.5000
Train Epoch: 0 [7680/35700] Loss: 1.327650 Acc: 0.5312
Train Epoch: 0 [8960/35700] Loss: 1.050043 Acc: 0.7500
Train Epoch: 0 [10240/35700] Loss: 0.945391 Acc: 0.6953
Train Epoch: 0 [11520/35700] Loss: 0.903133 Acc: 0.6875
Train Epoch: 0 [12800/35700] Loss: 0.920729 Acc: 0.7266
Train Epoch: 0 [14080/35700] Loss: 0.612463 Acc: 0.8750
Train Epoch: 0 [15360/35700] Loss: 0.730327 Acc: 0.8047
Train Epoch: 0 [16640/35700] Loss: 0.532178 Acc: 0.8828
Train Epoch: 0 [17920/35700] Loss: 0.490356 Acc: 0.8828
Train Epoch: 0 [19200/35700] Loss: 0.559360 Acc: 0.8359
Train Epoch: 0 [20480/35700] Loss: 0.412116 Acc: 0.8672
Train Epoch: 0 [21760/35700] Loss: 0.362199 Acc: 0.9062
Train Epoch: 0 [23040/35700] Loss: 0.464376 Acc: 0.8672
Train Epoch: 0 [24320/35700] Loss: 0.361374 Acc: 0.8984
Train Epoch: 0 [25600/35700] Loss: 0.320731 Acc: 0.9297
Train Epoch: 0 [26880/35700] Loss: 0.265266 Acc: 0.9609
Train Epoch: 0 [28160/35700] Loss: 0.350159 Acc: 0.9219
Train Epoch: 0 [29440/35700] Loss: 0.405501 Acc: 0.9141
Train Epoch: 0 [30720/35700] Loss: 0.327956 Acc: 0.9062
Train Epoch: 0 [32000/35700] Loss: 0.248671 Acc: 0.9219
Train Epoch: 0 [33280/35700] Loss: 0.400198 Acc: 0.8984
Train Epoch: 0 [34560/35700] Loss: 0.277630 Acc: 0.9141
C:\Users\fdal\AppData\Roaming\Python\Python37\site-packages\ipykernel_launcher.py:30: UserWarning: volatile was removed and now has no effect. Use `with torch.no_grad():` instead.
	Test set: Average loss: 0.2049, Accuracy: 5982/6300 (95%)
Saving model to C:\Users\fdal\Desktop\bigs\TOBIGS\best-0.pth
Train Epoch: 1 [1280/35700] Loss: 0.279817 Acc: 0.9375
Train Epoch: 1 [2560/35700] Loss: 0.150849 Acc: 0.9609
Train Epoch: 1 [3840/35700] Loss: 0.354600 Acc: 0.9062
Train Epoch: 1 [5120/35700] Loss: 0.259003 Acc: 0.9297
Train Epoch: 1 [6400/35700] Loss: 0.284537 Acc: 0.9453
Train Epoch: 1 [7680/35700] Loss: 0.151071 Acc: 0.9688
Train Epoch: 1 [8960/35700] Loss: 0.200743 Acc: 0.9609
Train Epoch: 1 [10240/35700] Loss: 0.154068 Acc: 0.9609
Train Epoch: 1 [11520/35700] Loss: 0.291180 Acc: 0.9219
Train Epoch: 1 [12800/35700] Loss: 0.214344 Acc: 0.9609
Train Epoch: 1 [14080/35700] Loss: 0.279012 Acc: 0.9062
Train Epoch: 1 [15360/35700] Loss: 0.146066 Acc: 0.9609
Train Epoch: 1 [16640/35700] Loss: 0.146616 Acc: 0.9688
Train Epoch: 1 [17920/35700] Loss: 0.211097 Acc: 0.9375
Train Epoch: 1 [19200/35700] Loss: 0.163379 Acc: 0.9609
Train Epoch: 1 [20480/35700] Loss: 0.222867 Acc: 0.9375
Train Epoch: 1 [21760/35700] Loss: 0.189005 Acc: 0.9531
Train Epoch: 1 [23040/35700] Loss: 0.228114 Acc: 0.9297
Train Epoch: 1 [24320/35700] Loss: 0.280236 Acc: 0.9141
Train Epoch: 1 [25600/35700] Loss: 0.194178 Acc: 0.9531
Train Epoch: 1 [26880/35700] Loss: 0.202265 Acc: 0.9453
Train Epoch: 1 [28160/35700] Loss: 0.171651 Acc: 0.9609
Train Epoch: 1 [29440/35700] Loss: 0.202334 Acc: 0.9453
Train Epoch: 1 [30720/35700] Loss: 0.185218 Acc: 0.9375
Train Epoch: 1 [32000/35700] Loss: 0.092796 Acc: 0.9766
Train Epoch: 1 [33280/35700] Loss: 0.149078 Acc: 0.9609
Train Epoch: 1 [34560/35700] Loss: 0.233831 Acc: 0.9531
	Test set: Average loss: 0.1279, Accuracy: 6094/6300 (97%)
Removing old model C:\Users\fdal\Desktop\bigs\TOBIGS\best-0.pth
Saving model to C:\Users\fdal\Desktop\bigs\TOBIGS\best-1.pth
Train Epoch: 2 [1280/35700] Loss: 0.150390 Acc: 0.9531
Train Epoch: 2 [2560/35700] Loss: 0.215843 Acc: 0.9297
Train Epoch: 2 [3840/35700] Loss: 0.094746 Acc: 0.9688
Train Epoch: 2 [5120/35700] Loss: 0.226026 Acc: 0.9375
Train Epoch: 2 [6400/35700] Loss: 0.069569 Acc: 0.9922
Train Epoch: 2 [7680/35700] Loss: 0.243328 Acc: 0.9297
Train Epoch: 2 [8960/35700] Loss: 0.119951 Acc: 0.9688
Train Epoch: 2 [10240/35700] Loss: 0.147673 Acc: 0.9609
Train Epoch: 2 [11520/35700] Loss: 0.122897 Acc: 0.9688
Train Epoch: 2 [12800/35700] Loss: 0.122860 Acc: 0.9688
Train Epoch: 2 [14080/35700] Loss: 0.105702 Acc: 0.9688
Train Epoch: 2 [15360/35700] Loss: 0.100719 Acc: 0.9688
Train Epoch: 2 [16640/35700] Loss: 0.287098 Acc: 0.9141
Train Epoch: 2 [17920/35700] Loss: 0.178424 Acc: 0.9609
Train Epoch: 2 [19200/35700] Loss: 0.123001 Acc: 0.9688
Train Epoch: 2 [20480/35700] Loss: 0.162992 Acc: 0.9531
Train Epoch: 2 [21760/35700] Loss: 0.083015 Acc: 0.9766
Train Epoch: 2 [23040/35700] Loss: 0.144118 Acc: 0.9766
Train Epoch: 2 [24320/35700] Loss: 0.151573 Acc: 0.9453
Train Epoch: 2 [25600/35700] Loss: 0.185852 Acc: 0.9453
Train Epoch: 2 [26880/35700] Loss: 0.076854 Acc: 0.9844
Train Epoch: 2 [28160/35700] Loss: 0.157314 Acc: 0.9531
Train Epoch: 2 [29440/35700] Loss: 0.111755 Acc: 0.9609
Train Epoch: 2 [30720/35700] Loss: 0.119584 Acc: 0.9609
Train Epoch: 2 [32000/35700] Loss: 0.133661 Acc: 0.9609
Train Epoch: 2 [33280/35700] Loss: 0.117783 Acc: 0.9688
Train Epoch: 2 [34560/35700] Loss: 0.126844 Acc: 0.9766
	Test set: Average loss: 0.1032, Accuracy: 6128/6300 (97%)
Removing old model C:\Users\fdal\Desktop\bigs\TOBIGS\best-1.pth
Saving model to C:\Users\fdal\Desktop\bigs\TOBIGS\best-2.pth
Train Epoch: 3 [1280/35700] Loss: 0.098966 Acc: 0.9766
Train Epoch: 3 [2560/35700] Loss: 0.082034 Acc: 0.9844
Train Epoch: 3 [3840/35700] Loss: 0.107756 Acc: 0.9453
Train Epoch: 3 [5120/35700] Loss: 0.152048 Acc: 0.9531
Train Epoch: 3 [6400/35700] Loss: 0.081050 Acc: 0.9688
Train Epoch: 3 [7680/35700] Loss: 0.093254 Acc: 0.9766
Train Epoch: 3 [8960/35700] Loss: 0.056750 Acc: 0.9766
Train Epoch: 3 [10240/35700] Loss: 0.124104 Acc: 0.9766
Train Epoch: 3 [11520/35700] Loss: 0.110204 Acc: 0.9609
Train Epoch: 3 [12800/35700] Loss: 0.080410 Acc: 0.9766
Train Epoch: 3 [14080/35700] Loss: 0.097995 Acc: 0.9844
Train Epoch: 3 [15360/35700] Loss: 0.061089 Acc: 0.9609
Train Epoch: 3 [16640/35700] Loss: 0.107936 Acc: 0.9688
Train Epoch: 3 [17920/35700] Loss: 0.122330 Acc: 0.9531
Train Epoch: 3 [19200/35700] Loss: 0.115403 Acc: 0.9688
Train Epoch: 3 [20480/35700] Loss: 0.100684 Acc: 0.9688
Train Epoch: 3 [21760/35700] Loss: 0.181690 Acc: 0.9453
Train Epoch: 3 [23040/35700] Loss: 0.111888 Acc: 0.9531
Train Epoch: 3 [24320/35700] Loss: 0.080385 Acc: 0.9766
Train Epoch: 3 [25600/35700] Loss: 0.075962 Acc: 0.9688
Train Epoch: 3 [26880/35700] Loss: 0.113938 Acc: 0.9688
Train Epoch: 3 [28160/35700] Loss: 0.067381 Acc: 0.9766
Train Epoch: 3 [29440/35700] Loss: 0.061363 Acc: 0.9844
Train Epoch: 3 [30720/35700] Loss: 0.095419 Acc: 0.9844
Train Epoch: 3 [32000/35700] Loss: 0.133193 Acc: 0.9609
Train Epoch: 3 [33280/35700] Loss: 0.190877 Acc: 0.9531
Train Epoch: 3 [34560/35700] Loss: 0.085142 Acc: 0.9609
	Test set: Average loss: 0.0865, Accuracy: 6148/6300 (98%)
Removing old model C:\Users\fdal\Desktop\bigs\TOBIGS\best-2.pth
Saving model to C:\Users\fdal\Desktop\bigs\TOBIGS\best-3.pth
Train Epoch: 4 [1280/35700] Loss: 0.244856 Acc: 0.9219
Train Epoch: 4 [2560/35700] Loss: 0.082025 Acc: 0.9922
Train Epoch: 4 [3840/35700] Loss: 0.071594 Acc: 0.9844
Train Epoch: 4 [5120/35700] Loss: 0.104873 Acc: 0.9766
Train Epoch: 4 [6400/35700] Loss: 0.101972 Acc: 0.9688
Train Epoch: 4 [7680/35700] Loss: 0.080158 Acc: 0.9766
Train Epoch: 4 [8960/35700] Loss: 0.058737 Acc: 0.9922
Train Epoch: 4 [10240/35700] Loss: 0.070426 Acc: 0.9688
Train Epoch: 4 [11520/35700] Loss: 0.123793 Acc: 0.9609
Train Epoch: 4 [12800/35700] Loss: 0.088333 Acc: 0.9844
Train Epoch: 4 [14080/35700] Loss: 0.108341 Acc: 0.9609
Train Epoch: 4 [15360/35700] Loss: 0.153622 Acc: 0.9531
Train Epoch: 4 [16640/35700] Loss: 0.056079 Acc: 0.9766
Train Epoch: 4 [17920/35700] Loss: 0.096348 Acc: 0.9766
Train Epoch: 4 [19200/35700] Loss: 0.070801 Acc: 0.9688
Train Epoch: 4 [20480/35700] Loss: 0.160555 Acc: 0.9766
Train Epoch: 4 [21760/35700] Loss: 0.166359 Acc: 0.9453
Train Epoch: 4 [23040/35700] Loss: 0.091487 Acc: 0.9844
Train Epoch: 4 [24320/35700] Loss: 0.115797 Acc: 0.9531
Train Epoch: 4 [25600/35700] Loss: 0.060580 Acc: 0.9844
Train Epoch: 4 [26880/35700] Loss: 0.072652 Acc: 0.9766
Train Epoch: 4 [28160/35700] Loss: 0.058664 Acc: 0.9844
Train Epoch: 4 [29440/35700] Loss: 0.088584 Acc: 0.9766
Train Epoch: 4 [30720/35700] Loss: 0.052374 Acc: 0.9844
Train Epoch: 4 [32000/35700] Loss: 0.084916 Acc: 0.9609
Train Epoch: 4 [33280/35700] Loss: 0.050880 Acc: 0.9922
Train Epoch: 4 [34560/35700] Loss: 0.089450 Acc: 0.9688
	Test set: Average loss: 0.0793, Accuracy: 6169/6300 (98%)
Removing old model C:\Users\fdal\Desktop\bigs\TOBIGS\best-3.pth
Saving model to C:\Users\fdal\Desktop\bigs\TOBIGS\best-4.pth
Train Epoch: 5 [1280/35700] Loss: 0.125959 Acc: 0.9688
Train Epoch: 5 [2560/35700] Loss: 0.078221 Acc: 0.9688
Train Epoch: 5 [3840/35700] Loss: 0.147597 Acc: 0.9453
Train Epoch: 5 [5120/35700] Loss: 0.071319 Acc: 0.9609
Train Epoch: 5 [6400/35700] Loss: 0.127567 Acc: 0.9609
Train Epoch: 5 [7680/35700] Loss: 0.098660 Acc: 0.9688
Train Epoch: 5 [8960/35700] Loss: 0.112339 Acc: 0.9531
Train Epoch: 5 [10240/35700] Loss: 0.066072 Acc: 0.9844
Train Epoch: 5 [11520/35700] Loss: 0.116722 Acc: 0.9609
Train Epoch: 5 [12800/35700] Loss: 0.089298 Acc: 0.9844
Train Epoch: 5 [14080/35700] Loss: 0.066283 Acc: 0.9844
Train Epoch: 5 [15360/35700] Loss: 0.146485 Acc: 0.9531
Train Epoch: 5 [16640/35700] Loss: 0.135166 Acc: 0.9609
Train Epoch: 5 [17920/35700] Loss: 0.101031 Acc: 0.9531
Train Epoch: 5 [19200/35700] Loss: 0.109770 Acc: 0.9766
Train Epoch: 5 [20480/35700] Loss: 0.064832 Acc: 0.9844
Train Epoch: 5 [21760/35700] Loss: 0.106731 Acc: 0.9766
Train Epoch: 5 [23040/35700] Loss: 0.049732 Acc: 0.9844
Train Epoch: 5 [24320/35700] Loss: 0.056308 Acc: 0.9766
Train Epoch: 5 [25600/35700] Loss: 0.113249 Acc: 0.9766
Train Epoch: 5 [26880/35700] Loss: 0.091497 Acc: 0.9922
Train Epoch: 5 [28160/35700] Loss: 0.060365 Acc: 0.9766
Train Epoch: 5 [29440/35700] Loss: 0.052726 Acc: 0.9922
Train Epoch: 5 [30720/35700] Loss: 0.063323 Acc: 0.9766
Train Epoch: 5 [32000/35700] Loss: 0.096192 Acc: 0.9609
Train Epoch: 5 [33280/35700] Loss: 0.149671 Acc: 0.9688
Train Epoch: 5 [34560/35700] Loss: 0.063375 Acc: 0.9844
	Test set: Average loss: 0.0729, Accuracy: 6179/6300 (98%)
Removing old model C:\Users\fdal\Desktop\bigs\TOBIGS\best-4.pth
Saving model to C:\Users\fdal\Desktop\bigs\TOBIGS\best-5.pth
Train Epoch: 6 [1280/35700] Loss: 0.071985 Acc: 0.9766
Train Epoch: 6 [2560/35700] Loss: 0.094118 Acc: 0.9688
Train Epoch: 6 [3840/35700] Loss: 0.086459 Acc: 0.9688
Train Epoch: 6 [5120/35700] Loss: 0.114306 Acc: 0.9688
Train Epoch: 6 [6400/35700] Loss: 0.128841 Acc: 0.9766
Train Epoch: 6 [7680/35700] Loss: 0.065532 Acc: 0.9844
Train Epoch: 6 [8960/35700] Loss: 0.101370 Acc: 0.9609
Train Epoch: 6 [10240/35700] Loss: 0.073002 Acc: 0.9688
Train Epoch: 6 [11520/35700] Loss: 0.083907 Acc: 0.9766
Train Epoch: 6 [12800/35700] Loss: 0.051260 Acc: 0.9844
Train Epoch: 6 [14080/35700] Loss: 0.106676 Acc: 0.9766
Train Epoch: 6 [15360/35700] Loss: 0.056815 Acc: 0.9688
Train Epoch: 6 [16640/35700] Loss: 0.040409 Acc: 0.9844
Train Epoch: 6 [17920/35700] Loss: 0.156995 Acc: 0.9219
Train Epoch: 6 [19200/35700] Loss: 0.067112 Acc: 0.9766
Train Epoch: 6 [20480/35700] Loss: 0.074414 Acc: 0.9688
Train Epoch: 6 [21760/35700] Loss: 0.081186 Acc: 0.9844
Train Epoch: 6 [23040/35700] Loss: 0.041688 Acc: 0.9844
Train Epoch: 6 [24320/35700] Loss: 0.143659 Acc: 0.9609
Train Epoch: 6 [25600/35700] Loss: 0.043329 Acc: 0.9922
Train Epoch: 6 [26880/35700] Loss: 0.058001 Acc: 0.9844
Train Epoch: 6 [28160/35700] Loss: 0.061538 Acc: 0.9688
Train Epoch: 6 [29440/35700] Loss: 0.028881 Acc: 0.9922
Train Epoch: 6 [30720/35700] Loss: 0.043342 Acc: 0.9922
Train Epoch: 6 [32000/35700] Loss: 0.060362 Acc: 0.9844
Train Epoch: 6 [33280/35700] Loss: 0.082402 Acc: 0.9688
Train Epoch: 6 [34560/35700] Loss: 0.025205 Acc: 1.0000
	Test set: Average loss: 0.0662, Accuracy: 6185/6300 (98%)
Removing old model C:\Users\fdal\Desktop\bigs\TOBIGS\best-5.pth
Saving model to C:\Users\fdal\Desktop\bigs\TOBIGS\best-6.pth
Train Epoch: 7 [1280/35700] Loss: 0.130955 Acc: 0.9609
Train Epoch: 7 [2560/35700] Loss: 0.026536 Acc: 1.0000
Train Epoch: 7 [3840/35700] Loss: 0.065081 Acc: 0.9766
Train Epoch: 7 [5120/35700] Loss: 0.026630 Acc: 1.0000
Train Epoch: 7 [6400/35700] Loss: 0.032714 Acc: 0.9922
Train Epoch: 7 [7680/35700] Loss: 0.046398 Acc: 0.9844
Train Epoch: 7 [8960/35700] Loss: 0.099613 Acc: 0.9688
Train Epoch: 7 [10240/35700] Loss: 0.061718 Acc: 0.9922
Train Epoch: 7 [11520/35700] Loss: 0.056224 Acc: 0.9844
Train Epoch: 7 [12800/35700] Loss: 0.112682 Acc: 0.9688
Train Epoch: 7 [14080/35700] Loss: 0.085372 Acc: 0.9766
Train Epoch: 7 [15360/35700] Loss: 0.083145 Acc: 0.9609
Train Epoch: 7 [16640/35700] Loss: 0.086112 Acc: 0.9766
Train Epoch: 7 [17920/35700] Loss: 0.076244 Acc: 0.9844
Train Epoch: 7 [19200/35700] Loss: 0.029705 Acc: 0.9922
Train Epoch: 7 [20480/35700] Loss: 0.033495 Acc: 0.9922
Train Epoch: 7 [21760/35700] Loss: 0.076668 Acc: 0.9922
Train Epoch: 7 [23040/35700] Loss: 0.071314 Acc: 0.9844
Train Epoch: 7 [24320/35700] Loss: 0.071869 Acc: 0.9844
Train Epoch: 7 [25600/35700] Loss: 0.047871 Acc: 0.9844
Train Epoch: 7 [26880/35700] Loss: 0.081042 Acc: 0.9844
Train Epoch: 7 [28160/35700] Loss: 0.044356 Acc: 0.9844
Train Epoch: 7 [29440/35700] Loss: 0.076051 Acc: 0.9766
Train Epoch: 7 [30720/35700] Loss: 0.087956 Acc: 0.9844
Train Epoch: 7 [32000/35700] Loss: 0.040518 Acc: 0.9922
Train Epoch: 7 [33280/35700] Loss: 0.088768 Acc: 0.9766
Train Epoch: 7 [34560/35700] Loss: 0.044392 Acc: 0.9844
	Test set: Average loss: 0.0617, Accuracy: 6197/6300 (98%)
Removing old model C:\Users\fdal\Desktop\bigs\TOBIGS\best-6.pth
Saving model to C:\Users\fdal\Desktop\bigs\TOBIGS\best-7.pth
Train Epoch: 8 [1280/35700] Loss: 0.068184 Acc: 0.9922
Train Epoch: 8 [2560/35700] Loss: 0.040129 Acc: 0.9922
Train Epoch: 8 [3840/35700] Loss: 0.023896 Acc: 0.9922
Train Epoch: 8 [5120/35700] Loss: 0.088726 Acc: 0.9844
Train Epoch: 8 [6400/35700] Loss: 0.086779 Acc: 0.9766
Train Epoch: 8 [7680/35700] Loss: 0.101970 Acc: 0.9766
Train Epoch: 8 [8960/35700] Loss: 0.053920 Acc: 0.9922
Train Epoch: 8 [10240/35700] Loss: 0.054325 Acc: 0.9844
Train Epoch: 8 [11520/35700] Loss: 0.060125 Acc: 0.9766
Train Epoch: 8 [12800/35700] Loss: 0.052874 Acc: 0.9844
Train Epoch: 8 [14080/35700] Loss: 0.052888 Acc: 0.9922
Train Epoch: 8 [15360/35700] Loss: 0.031786 Acc: 0.9922
Train Epoch: 8 [16640/35700] Loss: 0.114819 Acc: 0.9844
Train Epoch: 8 [17920/35700] Loss: 0.126417 Acc: 0.9531
Train Epoch: 8 [19200/35700] Loss: 0.093007 Acc: 0.9688
Train Epoch: 8 [20480/35700] Loss: 0.044209 Acc: 0.9844
Train Epoch: 8 [21760/35700] Loss: 0.059888 Acc: 0.9922
Train Epoch: 8 [23040/35700] Loss: 0.055443 Acc: 0.9922
Train Epoch: 8 [24320/35700] Loss: 0.048572 Acc: 0.9922
Train Epoch: 8 [25600/35700] Loss: 0.023349 Acc: 1.0000
Train Epoch: 8 [26880/35700] Loss: 0.073240 Acc: 0.9766
Train Epoch: 8 [28160/35700] Loss: 0.031457 Acc: 1.0000
Train Epoch: 8 [29440/35700] Loss: 0.027073 Acc: 0.9922
Train Epoch: 8 [30720/35700] Loss: 0.031680 Acc: 1.0000
Train Epoch: 8 [32000/35700] Loss: 0.062229 Acc: 0.9844
Train Epoch: 8 [33280/35700] Loss: 0.039874 Acc: 0.9922
Train Epoch: 8 [34560/35700] Loss: 0.024605 Acc: 1.0000
	Test set: Average loss: 0.0601, Accuracy: 6197/6300 (98%)
Train Epoch: 9 [1280/35700] Loss: 0.016230 Acc: 1.0000
Train Epoch: 9 [2560/35700] Loss: 0.046002 Acc: 0.9922
Train Epoch: 9 [3840/35700] Loss: 0.023645 Acc: 1.0000
Train Epoch: 9 [5120/35700] Loss: 0.043494 Acc: 0.9922
Train Epoch: 9 [6400/35700] Loss: 0.043088 Acc: 0.9844
Train Epoch: 9 [7680/35700] Loss: 0.022493 Acc: 1.0000
Train Epoch: 9 [8960/35700] Loss: 0.084896 Acc: 0.9766
Train Epoch: 9 [10240/35700] Loss: 0.056327 Acc: 0.9922
Train Epoch: 9 [11520/35700] Loss: 0.045696 Acc: 0.9844
Train Epoch: 9 [12800/35700] Loss: 0.028865 Acc: 0.9922
Train Epoch: 9 [14080/35700] Loss: 0.046354 Acc: 0.9844
Train Epoch: 9 [15360/35700] Loss: 0.059668 Acc: 0.9688
Train Epoch: 9 [16640/35700] Loss: 0.083914 Acc: 0.9531
Train Epoch: 9 [17920/35700] Loss: 0.074662 Acc: 0.9766
Train Epoch: 9 [19200/35700] Loss: 0.039048 Acc: 0.9922
Train Epoch: 9 [20480/35700] Loss: 0.063262 Acc: 0.9766
Train Epoch: 9 [21760/35700] Loss: 0.079238 Acc: 0.9766
Train Epoch: 9 [23040/35700] Loss: 0.013611 Acc: 1.0000
Train Epoch: 9 [24320/35700] Loss: 0.050806 Acc: 0.9844
Train Epoch: 9 [25600/35700] Loss: 0.044227 Acc: 0.9922
Train Epoch: 9 [26880/35700] Loss: 0.051790 Acc: 0.9922
Train Epoch: 9 [28160/35700] Loss: 0.030361 Acc: 0.9922
Train Epoch: 9 [29440/35700] Loss: 0.026584 Acc: 1.0000
Train Epoch: 9 [30720/35700] Loss: 0.041355 Acc: 0.9922
Train Epoch: 9 [32000/35700] Loss: 0.038175 Acc: 0.9844
Train Epoch: 9 [33280/35700] Loss: 0.027004 Acc: 0.9922
Train Epoch: 9 [34560/35700] Loss: 0.048753 Acc: 0.9844
	Test set: Average loss: 0.0571, Accuracy: 6196/6300 (98%)

In [26]:

for epoch in range(20):
        model.train()
        for batch_idx, (data, target) in enumerate(train_loader):
            indx_target = target.clone()
            data, target = data.cuda(), target.cuda()
            data, target = Variable(data), Variable(target)

            optimizer.zero_grad()
            output = model(data)
#             output = nn.Softmax(output)
#             loss = F.mse_loss(output, target)
            loss=F.cross_entropy(output, target)
            loss.backward()
            optimizer.step()

            if batch_idx % 10 ==0 and batch_idx > 0:
                pred = output.data.max(1)[1]  # get the index of the max log-probability
                correct = pred.cpu().eq(indx_target).sum()
                acc = correct * 1.0 / len(data)
                print('Train Epoch: {} [{}/{}] Loss: {:.6f} Acc: {:.4f}'.format(
                    epoch, batch_idx * len(data), len(train_loader.dataset),
                    loss, acc))

        model.eval()
        test_loss = 0
        correct = 0
        for data, target in test_loader:
            indx_target = target.clone()
            data, target = data.cuda(), target.cuda()
            data, target = Variable(data, volatile=True), Variable(target)
            output = model(data)
            test_loss += F.cross_entropy(output, target)
            pred = output.data.max(1)[1]
            correct += pred.cpu().eq(indx_target).sum()

        test_loss = test_loss / len(test_loader) 
        acc = 100. * correct / float(len(test_loader.dataset))
        print('\tTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format(
            test_loss, correct, len(test_loader.dataset), acc))
        
        if acc > best_acc:
            new_file = os.path.join('./', 'best3-{}.pth'.format(epoch))
            model_snapshot(model, new_file, old_file=old_file)
            best_acc = acc
            old_file = new_file
Train Epoch: 0 [1280/35700] Loss: 0.013202 Acc: 1.0000
Train Epoch: 0 [2560/35700] Loss: 0.035058 Acc: 0.9922
Train Epoch: 0 [3840/35700] Loss: 0.016134 Acc: 0.9922
Train Epoch: 0 [5120/35700] Loss: 0.019590 Acc: 0.9922
Train Epoch: 0 [6400/35700] Loss: 0.031274 Acc: 0.9922
Train Epoch: 0 [7680/35700] Loss: 0.023607 Acc: 0.9922
Train Epoch: 0 [8960/35700] Loss: 0.044469 Acc: 0.9844
Train Epoch: 0 [10240/35700] Loss: 0.017271 Acc: 1.0000
Train Epoch: 0 [11520/35700] Loss: 0.005256 Acc: 1.0000
Train Epoch: 0 [12800/35700] Loss: 0.010144 Acc: 1.0000
Train Epoch: 0 [14080/35700] Loss: 0.036877 Acc: 0.9844
Train Epoch: 0 [15360/35700] Loss: 0.034577 Acc: 0.9766
Train Epoch: 0 [16640/35700] Loss: 0.024325 Acc: 0.9922
Train Epoch: 0 [17920/35700] Loss: 0.004251 Acc: 1.0000
Train Epoch: 0 [19200/35700] Loss: 0.016439 Acc: 1.0000
Train Epoch: 0 [20480/35700] Loss: 0.013770 Acc: 0.9922
Train Epoch: 0 [21760/35700] Loss: 0.052215 Acc: 0.9922
Train Epoch: 0 [23040/35700] Loss: 0.022394 Acc: 0.9922
Train Epoch: 0 [24320/35700] Loss: 0.030750 Acc: 0.9922
Train Epoch: 0 [25600/35700] Loss: 0.011162 Acc: 1.0000
Train Epoch: 0 [26880/35700] Loss: 0.013450 Acc: 1.0000
Train Epoch: 0 [28160/35700] Loss: 0.031824 Acc: 0.9922
Train Epoch: 0 [29440/35700] Loss: 0.010608 Acc: 1.0000
Train Epoch: 0 [30720/35700] Loss: 0.005728 Acc: 1.0000
Train Epoch: 0 [32000/35700] Loss: 0.011517 Acc: 0.9922
Train Epoch: 0 [33280/35700] Loss: 0.084068 Acc: 0.9688
Train Epoch: 0 [34560/35700] Loss: 0.003580 Acc: 1.0000
C:\Users\fdal\AppData\Roaming\Python\Python37\site-packages\ipykernel_launcher.py:30: UserWarning: volatile was removed and now has no effect. Use `with torch.no_grad():` instead.
	Test set: Average loss: 0.0464, Accuracy: 6219/6300 (99%)
Train Epoch: 1 [1280/35700] Loss: 0.009305 Acc: 1.0000
Train Epoch: 1 [2560/35700] Loss: 0.006396 Acc: 1.0000
Train Epoch: 1 [3840/35700] Loss: 0.015711 Acc: 1.0000
Train Epoch: 1 [5120/35700] Loss: 0.013309 Acc: 0.9922
Train Epoch: 1 [6400/35700] Loss: 0.029237 Acc: 0.9844
Train Epoch: 1 [7680/35700] Loss: 0.002397 Acc: 1.0000
Train Epoch: 1 [8960/35700] Loss: 0.019866 Acc: 0.9922
Train Epoch: 1 [10240/35700] Loss: 0.009061 Acc: 1.0000
Train Epoch: 1 [11520/35700] Loss: 0.019840 Acc: 0.9922
Train Epoch: 1 [12800/35700] Loss: 0.010205 Acc: 1.0000
Train Epoch: 1 [14080/35700] Loss: 0.011645 Acc: 1.0000
Train Epoch: 1 [15360/35700] Loss: 0.023589 Acc: 0.9844
Train Epoch: 1 [16640/35700] Loss: 0.024232 Acc: 0.9922
Train Epoch: 1 [17920/35700] Loss: 0.016581 Acc: 1.0000
Train Epoch: 1 [19200/35700] Loss: 0.006078 Acc: 1.0000
Train Epoch: 1 [20480/35700] Loss: 0.044236 Acc: 0.9922
Train Epoch: 1 [21760/35700] Loss: 0.008707 Acc: 1.0000
Train Epoch: 1 [23040/35700] Loss: 0.007006 Acc: 1.0000
Train Epoch: 1 [24320/35700] Loss: 0.025175 Acc: 0.9922
Train Epoch: 1 [25600/35700] Loss: 0.064440 Acc: 0.9766
Train Epoch: 1 [26880/35700] Loss: 0.021496 Acc: 0.9922
Train Epoch: 1 [28160/35700] Loss: 0.034781 Acc: 0.9844
Train Epoch: 1 [29440/35700] Loss: 0.016579 Acc: 0.9922
Train Epoch: 1 [30720/35700] Loss: 0.006631 Acc: 1.0000
Train Epoch: 1 [32000/35700] Loss: 0.022896 Acc: 0.9922
Train Epoch: 1 [33280/35700] Loss: 0.011417 Acc: 1.0000
Train Epoch: 1 [34560/35700] Loss: 0.034972 Acc: 0.9922
	Test set: Average loss: 0.0443, Accuracy: 6216/6300 (99%)
Train Epoch: 2 [1280/35700] Loss: 0.009516 Acc: 1.0000
Train Epoch: 2 [2560/35700] Loss: 0.007159 Acc: 1.0000
Train Epoch: 2 [3840/35700] Loss: 0.030791 Acc: 0.9922
Train Epoch: 2 [5120/35700] Loss: 0.031196 Acc: 0.9922
Train Epoch: 2 [6400/35700] Loss: 0.012555 Acc: 1.0000
Train Epoch: 2 [7680/35700] Loss: 0.019455 Acc: 0.9922
Train Epoch: 2 [8960/35700] Loss: 0.008547 Acc: 1.0000
Train Epoch: 2 [10240/35700] Loss: 0.017482 Acc: 1.0000
Train Epoch: 2 [11520/35700] Loss: 0.013350 Acc: 1.0000
Train Epoch: 2 [12800/35700] Loss: 0.010488 Acc: 0.9922
Train Epoch: 2 [14080/35700] Loss: 0.006211 Acc: 1.0000
Train Epoch: 2 [15360/35700] Loss: 0.007948 Acc: 1.0000
Train Epoch: 2 [16640/35700] Loss: 0.005964 Acc: 1.0000
Train Epoch: 2 [17920/35700] Loss: 0.008013 Acc: 1.0000
Train Epoch: 2 [19200/35700] Loss: 0.015748 Acc: 1.0000
Train Epoch: 2 [20480/35700] Loss: 0.007231 Acc: 1.0000
Train Epoch: 2 [21760/35700] Loss: 0.009483 Acc: 1.0000
Train Epoch: 2 [23040/35700] Loss: 0.008259 Acc: 1.0000
Train Epoch: 2 [24320/35700] Loss: 0.017615 Acc: 0.9922
Train Epoch: 2 [25600/35700] Loss: 0.004169 Acc: 1.0000
Train Epoch: 2 [26880/35700] Loss: 0.004750 Acc: 1.0000
Train Epoch: 2 [28160/35700] Loss: 0.023091 Acc: 0.9922
Train Epoch: 2 [29440/35700] Loss: 0.007538 Acc: 1.0000
Train Epoch: 2 [30720/35700] Loss: 0.014542 Acc: 0.9922
Train Epoch: 2 [32000/35700] Loss: 0.014022 Acc: 1.0000
Train Epoch: 2 [33280/35700] Loss: 0.023046 Acc: 0.9922
Train Epoch: 2 [34560/35700] Loss: 0.004187 Acc: 1.0000
	Test set: Average loss: 0.0430, Accuracy: 6219/6300 (99%)
Train Epoch: 3 [1280/35700] Loss: 0.008820 Acc: 1.0000
Train Epoch: 3 [2560/35700] Loss: 0.017997 Acc: 0.9844
Train Epoch: 3 [3840/35700] Loss: 0.004952 Acc: 1.0000
Train Epoch: 3 [5120/35700] Loss: 0.006584 Acc: 1.0000
Train Epoch: 3 [6400/35700] Loss: 0.007387 Acc: 1.0000
Train Epoch: 3 [7680/35700] Loss: 0.013915 Acc: 0.9922
Train Epoch: 3 [8960/35700] Loss: 0.005955 Acc: 1.0000
Train Epoch: 3 [10240/35700] Loss: 0.011371 Acc: 0.9922
Train Epoch: 3 [11520/35700] Loss: 0.017638 Acc: 1.0000
Train Epoch: 3 [12800/35700] Loss: 0.012967 Acc: 1.0000
Train Epoch: 3 [14080/35700] Loss: 0.009479 Acc: 1.0000
Train Epoch: 3 [15360/35700] Loss: 0.038858 Acc: 0.9844
Train Epoch: 3 [16640/35700] Loss: 0.028353 Acc: 0.9922
Train Epoch: 3 [17920/35700] Loss: 0.011924 Acc: 1.0000
Train Epoch: 3 [19200/35700] Loss: 0.069226 Acc: 0.9922
Train Epoch: 3 [20480/35700] Loss: 0.005569 Acc: 1.0000
Train Epoch: 3 [21760/35700] Loss: 0.026231 Acc: 0.9922
Train Epoch: 3 [23040/35700] Loss: 0.004102 Acc: 1.0000
Train Epoch: 3 [24320/35700] Loss: 0.023952 Acc: 0.9844
Train Epoch: 3 [25600/35700] Loss: 0.010581 Acc: 0.9922
Train Epoch: 3 [26880/35700] Loss: 0.020030 Acc: 1.0000
Train Epoch: 3 [28160/35700] Loss: 0.004704 Acc: 1.0000
Train Epoch: 3 [29440/35700] Loss: 0.011347 Acc: 1.0000
Train Epoch: 3 [30720/35700] Loss: 0.016980 Acc: 0.9922
Train Epoch: 3 [32000/35700] Loss: 0.023742 Acc: 0.9922
Train Epoch: 3 [33280/35700] Loss: 0.007925 Acc: 1.0000
Train Epoch: 3 [34560/35700] Loss: 0.009212 Acc: 1.0000
	Test set: Average loss: 0.0427, Accuracy: 6219/6300 (99%)
Train Epoch: 4 [1280/35700] Loss: 0.035886 Acc: 0.9922
Train Epoch: 4 [2560/35700] Loss: 0.012759 Acc: 0.9922
Train Epoch: 4 [3840/35700] Loss: 0.036438 Acc: 0.9844
Train Epoch: 4 [5120/35700] Loss: 0.038623 Acc: 0.9922
Train Epoch: 4 [6400/35700] Loss: 0.010482 Acc: 1.0000
Train Epoch: 4 [7680/35700] Loss: 0.021846 Acc: 0.9922
Train Epoch: 4 [8960/35700] Loss: 0.028123 Acc: 0.9922
Train Epoch: 4 [10240/35700] Loss: 0.014700 Acc: 0.9922
Train Epoch: 4 [11520/35700] Loss: 0.026616 Acc: 0.9844
Train Epoch: 4 [12800/35700] Loss: 0.008905 Acc: 1.0000
Train Epoch: 4 [14080/35700] Loss: 0.008277 Acc: 1.0000
Train Epoch: 4 [15360/35700] Loss: 0.002342 Acc: 1.0000
Train Epoch: 4 [16640/35700] Loss: 0.008275 Acc: 1.0000
Train Epoch: 4 [17920/35700] Loss: 0.026588 Acc: 0.9922
Train Epoch: 4 [19200/35700] Loss: 0.006746 Acc: 1.0000
Train Epoch: 4 [20480/35700] Loss: 0.007028 Acc: 1.0000
Train Epoch: 4 [21760/35700] Loss: 0.015665 Acc: 0.9922
Train Epoch: 4 [23040/35700] Loss: 0.006424 Acc: 1.0000
Train Epoch: 4 [24320/35700] Loss: 0.054075 Acc: 0.9766
Train Epoch: 4 [25600/35700] Loss: 0.005193 Acc: 1.0000
Train Epoch: 4 [26880/35700] Loss: 0.062325 Acc: 0.9922
Train Epoch: 4 [28160/35700] Loss: 0.022573 Acc: 0.9922
Train Epoch: 4 [29440/35700] Loss: 0.011764 Acc: 1.0000
Train Epoch: 4 [30720/35700] Loss: 0.015704 Acc: 1.0000
Train Epoch: 4 [32000/35700] Loss: 0.020207 Acc: 0.9922
Train Epoch: 4 [33280/35700] Loss: 0.012568 Acc: 1.0000
Train Epoch: 4 [34560/35700] Loss: 0.024828 Acc: 0.9922
	Test set: Average loss: 0.0418, Accuracy: 6221/6300 (99%)
Removing old model C:\Users\fdal\Desktop\bigs\TOBIGS\best2-6.pth
Saving model to C:\Users\fdal\Desktop\bigs\TOBIGS\best3-4.pth
Train Epoch: 5 [1280/35700] Loss: 0.011650 Acc: 1.0000
Train Epoch: 5 [2560/35700] Loss: 0.009133 Acc: 1.0000
Train Epoch: 5 [3840/35700] Loss: 0.018598 Acc: 1.0000
Train Epoch: 5 [5120/35700] Loss: 0.005362 Acc: 1.0000
Train Epoch: 5 [6400/35700] Loss: 0.008241 Acc: 1.0000
Train Epoch: 5 [7680/35700] Loss: 0.017903 Acc: 0.9922
Train Epoch: 5 [8960/35700] Loss: 0.011286 Acc: 1.0000
Train Epoch: 5 [10240/35700] Loss: 0.008469 Acc: 1.0000
Train Epoch: 5 [11520/35700] Loss: 0.019498 Acc: 0.9922
Train Epoch: 5 [12800/35700] Loss: 0.006249 Acc: 1.0000
Train Epoch: 5 [14080/35700] Loss: 0.006228 Acc: 1.0000
Train Epoch: 5 [15360/35700] Loss: 0.005957 Acc: 1.0000
Train Epoch: 5 [16640/35700] Loss: 0.004423 Acc: 1.0000
Train Epoch: 5 [17920/35700] Loss: 0.031700 Acc: 0.9922
Train Epoch: 5 [19200/35700] Loss: 0.035711 Acc: 0.9844
Train Epoch: 5 [20480/35700] Loss: 0.012989 Acc: 0.9922
Train Epoch: 5 [21760/35700] Loss: 0.021291 Acc: 0.9922
Train Epoch: 5 [23040/35700] Loss: 0.004027 Acc: 1.0000
Train Epoch: 5 [24320/35700] Loss: 0.006233 Acc: 1.0000
Train Epoch: 5 [25600/35700] Loss: 0.002967 Acc: 1.0000
Train Epoch: 5 [26880/35700] Loss: 0.021698 Acc: 0.9922
Train Epoch: 5 [28160/35700] Loss: 0.002278 Acc: 1.0000
Train Epoch: 5 [29440/35700] Loss: 0.006399 Acc: 1.0000
Train Epoch: 5 [30720/35700] Loss: 0.004925 Acc: 1.0000
Train Epoch: 5 [32000/35700] Loss: 0.005414 Acc: 1.0000
Train Epoch: 5 [33280/35700] Loss: 0.011833 Acc: 1.0000
Train Epoch: 5 [34560/35700] Loss: 0.009437 Acc: 1.0000
	Test set: Average loss: 0.0431, Accuracy: 6221/6300 (99%)
Train Epoch: 6 [1280/35700] Loss: 0.009289 Acc: 0.9922
Train Epoch: 6 [2560/35700] Loss: 0.013428 Acc: 1.0000
Train Epoch: 6 [3840/35700] Loss: 0.002936 Acc: 1.0000
Train Epoch: 6 [5120/35700] Loss: 0.004726 Acc: 1.0000
Train Epoch: 6 [6400/35700] Loss: 0.008076 Acc: 1.0000
Train Epoch: 6 [7680/35700] Loss: 0.007146 Acc: 1.0000
Train Epoch: 6 [8960/35700] Loss: 0.024096 Acc: 0.9922
Train Epoch: 6 [10240/35700] Loss: 0.010962 Acc: 1.0000
Train Epoch: 6 [11520/35700] Loss: 0.007814 Acc: 1.0000
Train Epoch: 6 [12800/35700] Loss: 0.022170 Acc: 0.9922
Train Epoch: 6 [14080/35700] Loss: 0.023966 Acc: 0.9922
Train Epoch: 6 [15360/35700] Loss: 0.004396 Acc: 1.0000
Train Epoch: 6 [16640/35700] Loss: 0.007671 Acc: 1.0000
Train Epoch: 6 [17920/35700] Loss: 0.019449 Acc: 0.9922
Train Epoch: 6 [19200/35700] Loss: 0.027812 Acc: 0.9922
Train Epoch: 6 [20480/35700] Loss: 0.022467 Acc: 0.9922
Train Epoch: 6 [21760/35700] Loss: 0.020296 Acc: 0.9922
Train Epoch: 6 [23040/35700] Loss: 0.008572 Acc: 1.0000
Train Epoch: 6 [24320/35700] Loss: 0.015058 Acc: 1.0000
Train Epoch: 6 [25600/35700] Loss: 0.002481 Acc: 1.0000
Train Epoch: 6 [26880/35700] Loss: 0.008563 Acc: 1.0000
Train Epoch: 6 [28160/35700] Loss: 0.011974 Acc: 1.0000
Train Epoch: 6 [29440/35700] Loss: 0.012750 Acc: 0.9922
Train Epoch: 6 [30720/35700] Loss: 0.012436 Acc: 0.9922
Train Epoch: 6 [32000/35700] Loss: 0.008215 Acc: 1.0000
Train Epoch: 6 [33280/35700] Loss: 0.014430 Acc: 0.9922
Train Epoch: 6 [34560/35700] Loss: 0.009810 Acc: 1.0000
	Test set: Average loss: 0.0462, Accuracy: 6217/6300 (99%)
Train Epoch: 7 [1280/35700] Loss: 0.003018 Acc: 1.0000
Train Epoch: 7 [2560/35700] Loss: 0.010746 Acc: 1.0000
Train Epoch: 7 [3840/35700] Loss: 0.016586 Acc: 0.9922
Train Epoch: 7 [5120/35700] Loss: 0.004625 Acc: 1.0000
Train Epoch: 7 [6400/35700] Loss: 0.037193 Acc: 0.9766
Train Epoch: 7 [7680/35700] Loss: 0.017654 Acc: 1.0000
Train Epoch: 7 [8960/35700] Loss: 0.007546 Acc: 1.0000
Train Epoch: 7 [10240/35700] Loss: 0.007095 Acc: 1.0000
Train Epoch: 7 [11520/35700] Loss: 0.008016 Acc: 1.0000
Train Epoch: 7 [12800/35700] Loss: 0.008327 Acc: 1.0000
Train Epoch: 7 [14080/35700] Loss: 0.017331 Acc: 0.9922
Train Epoch: 7 [15360/35700] Loss: 0.047082 Acc: 0.9922
Train Epoch: 7 [16640/35700] Loss: 0.035762 Acc: 0.9844
Train Epoch: 7 [17920/35700] Loss: 0.003030 Acc: 1.0000
Train Epoch: 7 [19200/35700] Loss: 0.016038 Acc: 0.9922
Train Epoch: 7 [20480/35700] Loss: 0.016200 Acc: 0.9922
Train Epoch: 7 [21760/35700] Loss: 0.007151 Acc: 1.0000
Train Epoch: 7 [23040/35700] Loss: 0.032901 Acc: 0.9922
Train Epoch: 7 [24320/35700] Loss: 0.011071 Acc: 1.0000
Train Epoch: 7 [25600/35700] Loss: 0.002036 Acc: 1.0000
Train Epoch: 7 [26880/35700] Loss: 0.011260 Acc: 1.0000
Train Epoch: 7 [28160/35700] Loss: 0.008163 Acc: 1.0000
Train Epoch: 7 [29440/35700] Loss: 0.008470 Acc: 1.0000
Train Epoch: 7 [30720/35700] Loss: 0.017386 Acc: 0.9922
Train Epoch: 7 [32000/35700] Loss: 0.006222 Acc: 1.0000
Train Epoch: 7 [33280/35700] Loss: 0.006380 Acc: 1.0000
Train Epoch: 7 [34560/35700] Loss: 0.004300 Acc: 1.0000
	Test set: Average loss: 0.0427, Accuracy: 6220/6300 (99%)
Train Epoch: 8 [1280/35700] Loss: 0.008467 Acc: 1.0000
Train Epoch: 8 [2560/35700] Loss: 0.005103 Acc: 1.0000
Train Epoch: 8 [3840/35700] Loss: 0.005993 Acc: 1.0000
Train Epoch: 8 [5120/35700] Loss: 0.001480 Acc: 1.0000
Train Epoch: 8 [6400/35700] Loss: 0.024817 Acc: 0.9844
Train Epoch: 8 [7680/35700] Loss: 0.004815 Acc: 1.0000
Train Epoch: 8 [8960/35700] Loss: 0.008851 Acc: 1.0000
Train Epoch: 8 [10240/35700] Loss: 0.005326 Acc: 1.0000
Train Epoch: 8 [11520/35700] Loss: 0.004189 Acc: 1.0000
Train Epoch: 8 [12800/35700] Loss: 0.006187 Acc: 1.0000
Train Epoch: 8 [14080/35700] Loss: 0.014733 Acc: 0.9922
Train Epoch: 8 [15360/35700] Loss: 0.002868 Acc: 1.0000
Train Epoch: 8 [16640/35700] Loss: 0.007236 Acc: 1.0000
Train Epoch: 8 [17920/35700] Loss: 0.012902 Acc: 0.9922
Train Epoch: 8 [19200/35700] Loss: 0.018841 Acc: 0.9922
Train Epoch: 8 [20480/35700] Loss: 0.003976 Acc: 1.0000
Train Epoch: 8 [21760/35700] Loss: 0.003770 Acc: 1.0000
Train Epoch: 8 [23040/35700] Loss: 0.012485 Acc: 1.0000
Train Epoch: 8 [24320/35700] Loss: 0.003855 Acc: 1.0000
Train Epoch: 8 [25600/35700] Loss: 0.002653 Acc: 1.0000
Train Epoch: 8 [26880/35700] Loss: 0.000928 Acc: 1.0000
Train Epoch: 8 [28160/35700] Loss: 0.003571 Acc: 1.0000
Train Epoch: 8 [29440/35700] Loss: 0.017915 Acc: 0.9922
Train Epoch: 8 [30720/35700] Loss: 0.056970 Acc: 0.9844
Train Epoch: 8 [32000/35700] Loss: 0.005461 Acc: 1.0000
Train Epoch: 8 [33280/35700] Loss: 0.008628 Acc: 1.0000
Train Epoch: 8 [34560/35700] Loss: 0.025012 Acc: 0.9922
	Test set: Average loss: 0.0422, Accuracy: 6223/6300 (99%)
Removing old model C:\Users\fdal\Desktop\bigs\TOBIGS\best3-4.pth
Saving model to C:\Users\fdal\Desktop\bigs\TOBIGS\best3-8.pth
Train Epoch: 9 [1280/35700] Loss: 0.003322 Acc: 1.0000
Train Epoch: 9 [2560/35700] Loss: 0.009895 Acc: 1.0000
Train Epoch: 9 [3840/35700] Loss: 0.008245 Acc: 1.0000
Train Epoch: 9 [5120/35700] Loss: 0.002083 Acc: 1.0000
Train Epoch: 9 [6400/35700] Loss: 0.001608 Acc: 1.0000
Train Epoch: 9 [7680/35700] Loss: 0.054758 Acc: 0.9844
Train Epoch: 9 [8960/35700] Loss: 0.010248 Acc: 1.0000
Train Epoch: 9 [10240/35700] Loss: 0.003344 Acc: 1.0000
Train Epoch: 9 [11520/35700] Loss: 0.006116 Acc: 1.0000
Train Epoch: 9 [12800/35700] Loss: 0.022682 Acc: 0.9922
Train Epoch: 9 [14080/35700] Loss: 0.005221 Acc: 1.0000
Train Epoch: 9 [15360/35700] Loss: 0.007984 Acc: 1.0000
Train Epoch: 9 [16640/35700] Loss: 0.003598 Acc: 1.0000
Train Epoch: 9 [17920/35700] Loss: 0.013012 Acc: 0.9922
Train Epoch: 9 [19200/35700] Loss: 0.005511 Acc: 1.0000
Train Epoch: 9 [20480/35700] Loss: 0.012429 Acc: 0.9922
Train Epoch: 9 [21760/35700] Loss: 0.009021 Acc: 1.0000
Train Epoch: 9 [23040/35700] Loss: 0.009216 Acc: 0.9922
Train Epoch: 9 [24320/35700] Loss: 0.012027 Acc: 1.0000
Train Epoch: 9 [25600/35700] Loss: 0.002994 Acc: 1.0000
Train Epoch: 9 [26880/35700] Loss: 0.009445 Acc: 0.9922
Train Epoch: 9 [28160/35700] Loss: 0.002139 Acc: 1.0000
Train Epoch: 9 [29440/35700] Loss: 0.008209 Acc: 1.0000
Train Epoch: 9 [30720/35700] Loss: 0.005280 Acc: 1.0000
Train Epoch: 9 [32000/35700] Loss: 0.014982 Acc: 1.0000
Train Epoch: 9 [33280/35700] Loss: 0.002861 Acc: 1.0000
Train Epoch: 9 [34560/35700] Loss: 0.003033 Acc: 1.0000
	Test set: Average loss: 0.0431, Accuracy: 6227/6300 (99%)
Removing old model C:\Users\fdal\Desktop\bigs\TOBIGS\best3-8.pth
Saving model to C:\Users\fdal\Desktop\bigs\TOBIGS\best3-9.pth
Train Epoch: 10 [1280/35700] Loss: 0.017470 Acc: 0.9922
Train Epoch: 10 [2560/35700] Loss: 0.017560 Acc: 0.9922
Train Epoch: 10 [3840/35700] Loss: 0.011589 Acc: 0.9922
Train Epoch: 10 [5120/35700] Loss: 0.002857 Acc: 1.0000
Train Epoch: 10 [6400/35700] Loss: 0.015193 Acc: 0.9922
Train Epoch: 10 [7680/35700] Loss: 0.006690 Acc: 1.0000
Train Epoch: 10 [8960/35700] Loss: 0.002047 Acc: 1.0000
Train Epoch: 10 [10240/35700] Loss: 0.034358 Acc: 0.9922
Train Epoch: 10 [11520/35700] Loss: 0.007165 Acc: 1.0000
Train Epoch: 10 [12800/35700] Loss: 0.016807 Acc: 0.9922
Train Epoch: 10 [14080/35700] Loss: 0.017167 Acc: 0.9922
Train Epoch: 10 [15360/35700] Loss: 0.016933 Acc: 0.9922
Train Epoch: 10 [16640/35700] Loss: 0.007813 Acc: 1.0000
Train Epoch: 10 [17920/35700] Loss: 0.006973 Acc: 0.9922
Train Epoch: 10 [19200/35700] Loss: 0.004593 Acc: 1.0000
Train Epoch: 10 [20480/35700] Loss: 0.003551 Acc: 1.0000
Train Epoch: 10 [21760/35700] Loss: 0.005891 Acc: 1.0000
Train Epoch: 10 [23040/35700] Loss: 0.021361 Acc: 0.9844
Train Epoch: 10 [24320/35700] Loss: 0.001931 Acc: 1.0000
Train Epoch: 10 [25600/35700] Loss: 0.005889 Acc: 1.0000
Train Epoch: 10 [26880/35700] Loss: 0.006793 Acc: 1.0000
Train Epoch: 10 [28160/35700] Loss: 0.031389 Acc: 0.9844
Train Epoch: 10 [29440/35700] Loss: 0.012116 Acc: 1.0000
Train Epoch: 10 [30720/35700] Loss: 0.002237 Acc: 1.0000
Train Epoch: 10 [32000/35700] Loss: 0.014451 Acc: 0.9922
Train Epoch: 10 [33280/35700] Loss: 0.007634 Acc: 1.0000
Train Epoch: 10 [34560/35700] Loss: 0.002307 Acc: 1.0000
	Test set: Average loss: 0.0424, Accuracy: 6223/6300 (99%)
Train Epoch: 11 [1280/35700] Loss: 0.004920 Acc: 1.0000
Train Epoch: 11 [2560/35700] Loss: 0.003419 Acc: 1.0000
Train Epoch: 11 [3840/35700] Loss: 0.004221 Acc: 1.0000
Train Epoch: 11 [5120/35700] Loss: 0.010100 Acc: 1.0000
Train Epoch: 11 [6400/35700] Loss: 0.005573 Acc: 1.0000
Train Epoch: 11 [7680/35700] Loss: 0.002817 Acc: 1.0000
Train Epoch: 11 [8960/35700] Loss: 0.012794 Acc: 1.0000
Train Epoch: 11 [10240/35700] Loss: 0.008896 Acc: 1.0000
Train Epoch: 11 [11520/35700] Loss: 0.009799 Acc: 1.0000
Train Epoch: 11 [12800/35700] Loss: 0.021937 Acc: 0.9922
Train Epoch: 11 [14080/35700] Loss: 0.056562 Acc: 0.9922
Train Epoch: 11 [15360/35700] Loss: 0.006776 Acc: 1.0000
Train Epoch: 11 [16640/35700] Loss: 0.004502 Acc: 1.0000
Train Epoch: 11 [17920/35700] Loss: 0.002006 Acc: 1.0000
Train Epoch: 11 [19200/35700] Loss: 0.007799 Acc: 1.0000
Train Epoch: 11 [20480/35700] Loss: 0.004900 Acc: 1.0000
Train Epoch: 11 [21760/35700] Loss: 0.017317 Acc: 0.9922
Train Epoch: 11 [23040/35700] Loss: 0.006592 Acc: 1.0000
Train Epoch: 11 [24320/35700] Loss: 0.003974 Acc: 1.0000
Train Epoch: 11 [25600/35700] Loss: 0.003421 Acc: 1.0000
Train Epoch: 11 [26880/35700] Loss: 0.007707 Acc: 1.0000
Train Epoch: 11 [28160/35700] Loss: 0.002051 Acc: 1.0000
Train Epoch: 11 [29440/35700] Loss: 0.005310 Acc: 1.0000
Train Epoch: 11 [30720/35700] Loss: 0.002955 Acc: 1.0000
Train Epoch: 11 [32000/35700] Loss: 0.017348 Acc: 1.0000
Train Epoch: 11 [33280/35700] Loss: 0.012491 Acc: 1.0000
Train Epoch: 11 [34560/35700] Loss: 0.001804 Acc: 1.0000
	Test set: Average loss: 0.0413, Accuracy: 6227/6300 (99%)
Train Epoch: 12 [1280/35700] Loss: 0.004928 Acc: 1.0000
Train Epoch: 12 [2560/35700] Loss: 0.002775 Acc: 1.0000
Train Epoch: 12 [3840/35700] Loss: 0.003240 Acc: 1.0000
Train Epoch: 12 [5120/35700] Loss: 0.004136 Acc: 1.0000
Train Epoch: 12 [6400/35700] Loss: 0.013640 Acc: 0.9922
Train Epoch: 12 [7680/35700] Loss: 0.019670 Acc: 0.9922
Train Epoch: 12 [8960/35700] Loss: 0.002057 Acc: 1.0000
Train Epoch: 12 [10240/35700] Loss: 0.012085 Acc: 0.9922
Train Epoch: 12 [11520/35700] Loss: 0.001419 Acc: 1.0000
Train Epoch: 12 [12800/35700] Loss: 0.019547 Acc: 0.9922
Train Epoch: 12 [14080/35700] Loss: 0.001661 Acc: 1.0000
Train Epoch: 12 [15360/35700] Loss: 0.004485 Acc: 1.0000
Train Epoch: 12 [16640/35700] Loss: 0.011999 Acc: 1.0000
Train Epoch: 12 [17920/35700] Loss: 0.017298 Acc: 1.0000
Train Epoch: 12 [19200/35700] Loss: 0.004204 Acc: 1.0000
Train Epoch: 12 [20480/35700] Loss: 0.002776 Acc: 1.0000
Train Epoch: 12 [21760/35700] Loss: 0.009779 Acc: 1.0000
Train Epoch: 12 [23040/35700] Loss: 0.001933 Acc: 1.0000
Train Epoch: 12 [24320/35700] Loss: 0.003767 Acc: 1.0000
Train Epoch: 12 [25600/35700] Loss: 0.003536 Acc: 1.0000
Train Epoch: 12 [26880/35700] Loss: 0.009879 Acc: 1.0000
Train Epoch: 12 [28160/35700] Loss: 0.004013 Acc: 1.0000
Train Epoch: 12 [29440/35700] Loss: 0.006554 Acc: 1.0000
Train Epoch: 12 [30720/35700] Loss: 0.006121 Acc: 1.0000
Train Epoch: 12 [32000/35700] Loss: 0.012384 Acc: 1.0000
Train Epoch: 12 [33280/35700] Loss: 0.011921 Acc: 1.0000
Train Epoch: 12 [34560/35700] Loss: 0.007056 Acc: 1.0000
	Test set: Average loss: 0.0445, Accuracy: 6223/6300 (99%)
Train Epoch: 13 [1280/35700] Loss: 0.008034 Acc: 1.0000
Train Epoch: 13 [2560/35700] Loss: 0.004946 Acc: 1.0000
Train Epoch: 13 [3840/35700] Loss: 0.001673 Acc: 1.0000
Train Epoch: 13 [5120/35700] Loss: 0.012521 Acc: 0.9922
Train Epoch: 13 [6400/35700] Loss: 0.002857 Acc: 1.0000
Train Epoch: 13 [7680/35700] Loss: 0.012198 Acc: 1.0000
Train Epoch: 13 [8960/35700] Loss: 0.004196 Acc: 1.0000
Train Epoch: 13 [10240/35700] Loss: 0.002735 Acc: 1.0000
Train Epoch: 13 [11520/35700] Loss: 0.003326 Acc: 1.0000
Train Epoch: 13 [12800/35700] Loss: 0.010312 Acc: 0.9922
Train Epoch: 13 [14080/35700] Loss: 0.006750 Acc: 1.0000
Train Epoch: 13 [15360/35700] Loss: 0.006232 Acc: 1.0000
Train Epoch: 13 [16640/35700] Loss: 0.005188 Acc: 1.0000
Train Epoch: 13 [17920/35700] Loss: 0.020822 Acc: 0.9922
Train Epoch: 13 [19200/35700] Loss: 0.016199 Acc: 0.9922
Train Epoch: 13 [20480/35700] Loss: 0.006863 Acc: 1.0000
Train Epoch: 13 [21760/35700] Loss: 0.012340 Acc: 1.0000
Train Epoch: 13 [23040/35700] Loss: 0.009106 Acc: 1.0000
Train Epoch: 13 [24320/35700] Loss: 0.004139 Acc: 1.0000
Train Epoch: 13 [25600/35700] Loss: 0.007589 Acc: 1.0000
Train Epoch: 13 [26880/35700] Loss: 0.007579 Acc: 1.0000
Train Epoch: 13 [28160/35700] Loss: 0.004560 Acc: 1.0000
Train Epoch: 13 [29440/35700] Loss: 0.003241 Acc: 1.0000
Train Epoch: 13 [30720/35700] Loss: 0.004317 Acc: 1.0000
Train Epoch: 13 [32000/35700] Loss: 0.005737 Acc: 1.0000
Train Epoch: 13 [33280/35700] Loss: 0.016061 Acc: 0.9922
Train Epoch: 13 [34560/35700] Loss: 0.005308 Acc: 1.0000
	Test set: Average loss: 0.0430, Accuracy: 6221/6300 (99%)
Train Epoch: 14 [1280/35700] Loss: 0.002092 Acc: 1.0000
Train Epoch: 14 [2560/35700] Loss: 0.044174 Acc: 0.9922
Train Epoch: 14 [3840/35700] Loss: 0.004120 Acc: 1.0000
Train Epoch: 14 [5120/35700] Loss: 0.001705 Acc: 1.0000
Train Epoch: 14 [6400/35700] Loss: 0.002672 Acc: 1.0000
Train Epoch: 14 [7680/35700] Loss: 0.004471 Acc: 1.0000
Train Epoch: 14 [8960/35700] Loss: 0.019397 Acc: 0.9922
Train Epoch: 14 [10240/35700] Loss: 0.004031 Acc: 1.0000
Train Epoch: 14 [11520/35700] Loss: 0.005813 Acc: 1.0000
Train Epoch: 14 [12800/35700] Loss: 0.011444 Acc: 0.9922
Train Epoch: 14 [14080/35700] Loss: 0.008241 Acc: 1.0000
Train Epoch: 14 [15360/35700] Loss: 0.001865 Acc: 1.0000
Train Epoch: 14 [16640/35700] Loss: 0.012449 Acc: 0.9922
Train Epoch: 14 [17920/35700] Loss: 0.015591 Acc: 0.9922
Train Epoch: 14 [19200/35700] Loss: 0.003096 Acc: 1.0000
Train Epoch: 14 [20480/35700] Loss: 0.015007 Acc: 0.9922
Train Epoch: 14 [21760/35700] Loss: 0.010000 Acc: 1.0000
Train Epoch: 14 [23040/35700] Loss: 0.003928 Acc: 1.0000
Train Epoch: 14 [24320/35700] Loss: 0.003704 Acc: 1.0000
Train Epoch: 14 [25600/35700] Loss: 0.011083 Acc: 0.9922
Train Epoch: 14 [26880/35700] Loss: 0.019151 Acc: 0.9922
Train Epoch: 14 [28160/35700] Loss: 0.003427 Acc: 1.0000
Train Epoch: 14 [29440/35700] Loss: 0.006580 Acc: 1.0000
Train Epoch: 14 [30720/35700] Loss: 0.002412 Acc: 1.0000
Train Epoch: 14 [32000/35700] Loss: 0.014303 Acc: 0.9922
Train Epoch: 14 [33280/35700] Loss: 0.001399 Acc: 1.0000
Train Epoch: 14 [34560/35700] Loss: 0.001404 Acc: 1.0000
	Test set: Average loss: 0.0416, Accuracy: 6229/6300 (99%)
Removing old model C:\Users\fdal\Desktop\bigs\TOBIGS\best3-9.pth
Saving model to C:\Users\fdal\Desktop\bigs\TOBIGS\best3-14.pth
Train Epoch: 15 [1280/35700] Loss: 0.002035 Acc: 1.0000
Train Epoch: 15 [2560/35700] Loss: 0.006259 Acc: 1.0000
Train Epoch: 15 [3840/35700] Loss: 0.005544 Acc: 1.0000
Train Epoch: 15 [5120/35700] Loss: 0.005282 Acc: 1.0000
Train Epoch: 15 [6400/35700] Loss: 0.001497 Acc: 1.0000
Train Epoch: 15 [7680/35700] Loss: 0.007443 Acc: 1.0000
Train Epoch: 15 [8960/35700] Loss: 0.007897 Acc: 1.0000
Train Epoch: 15 [10240/35700] Loss: 0.005864 Acc: 1.0000
Train Epoch: 15 [11520/35700] Loss: 0.001252 Acc: 1.0000
Train Epoch: 15 [12800/35700] Loss: 0.001953 Acc: 1.0000
Train Epoch: 15 [14080/35700] Loss: 0.006586 Acc: 1.0000
Train Epoch: 15 [15360/35700] Loss: 0.056689 Acc: 0.9844
Train Epoch: 15 [16640/35700] Loss: 0.002990 Acc: 1.0000
Train Epoch: 15 [17920/35700] Loss: 0.014329 Acc: 0.9922
Train Epoch: 15 [19200/35700] Loss: 0.009619 Acc: 1.0000
Train Epoch: 15 [20480/35700] Loss: 0.007366 Acc: 1.0000
Train Epoch: 15 [21760/35700] Loss: 0.006011 Acc: 1.0000
Train Epoch: 15 [23040/35700] Loss: 0.004728 Acc: 1.0000
Train Epoch: 15 [24320/35700] Loss: 0.009800 Acc: 0.9922
Train Epoch: 15 [25600/35700] Loss: 0.001612 Acc: 1.0000
Train Epoch: 15 [26880/35700] Loss: 0.002232 Acc: 1.0000
Train Epoch: 15 [28160/35700] Loss: 0.002017 Acc: 1.0000
Train Epoch: 15 [29440/35700] Loss: 0.002586 Acc: 1.0000
Train Epoch: 15 [30720/35700] Loss: 0.069666 Acc: 0.9922
Train Epoch: 15 [32000/35700] Loss: 0.008856 Acc: 1.0000
Train Epoch: 15 [33280/35700] Loss: 0.003854 Acc: 1.0000
Train Epoch: 15 [34560/35700] Loss: 0.003093 Acc: 1.0000
	Test set: Average loss: 0.0408, Accuracy: 6224/6300 (99%)
Train Epoch: 16 [1280/35700] Loss: 0.006698 Acc: 1.0000
Train Epoch: 16 [2560/35700] Loss: 0.001760 Acc: 1.0000
Train Epoch: 16 [3840/35700] Loss: 0.003524 Acc: 1.0000
Train Epoch: 16 [5120/35700] Loss: 0.007276 Acc: 1.0000
Train Epoch: 16 [6400/35700] Loss: 0.007295 Acc: 1.0000
Train Epoch: 16 [7680/35700] Loss: 0.008822 Acc: 1.0000
Train Epoch: 16 [8960/35700] Loss: 0.010521 Acc: 1.0000
Train Epoch: 16 [10240/35700] Loss: 0.001867 Acc: 1.0000
Train Epoch: 16 [11520/35700] Loss: 0.005164 Acc: 1.0000
Train Epoch: 16 [12800/35700] Loss: 0.003157 Acc: 1.0000
Train Epoch: 16 [14080/35700] Loss: 0.005262 Acc: 1.0000
Train Epoch: 16 [15360/35700] Loss: 0.008923 Acc: 1.0000
Train Epoch: 16 [16640/35700] Loss: 0.004938 Acc: 1.0000
Train Epoch: 16 [17920/35700] Loss: 0.004617 Acc: 1.0000
Train Epoch: 16 [19200/35700] Loss: 0.002539 Acc: 1.0000
Train Epoch: 16 [20480/35700] Loss: 0.006119 Acc: 1.0000
Train Epoch: 16 [21760/35700] Loss: 0.015102 Acc: 0.9922
Train Epoch: 16 [23040/35700] Loss: 0.002279 Acc: 1.0000
Train Epoch: 16 [24320/35700] Loss: 0.002649 Acc: 1.0000
Train Epoch: 16 [25600/35700] Loss: 0.004936 Acc: 1.0000
Train Epoch: 16 [26880/35700] Loss: 0.014666 Acc: 0.9922
Train Epoch: 16 [28160/35700] Loss: 0.003947 Acc: 1.0000
Train Epoch: 16 [29440/35700] Loss: 0.029122 Acc: 0.9922
Train Epoch: 16 [30720/35700] Loss: 0.005567 Acc: 1.0000
Train Epoch: 16 [32000/35700] Loss: 0.021152 Acc: 0.9922
Train Epoch: 16 [33280/35700] Loss: 0.001724 Acc: 1.0000
Train Epoch: 16 [34560/35700] Loss: 0.010212 Acc: 1.0000
	Test set: Average loss: 0.0443, Accuracy: 6225/6300 (99%)
Train Epoch: 17 [1280/35700] Loss: 0.001372 Acc: 1.0000
Train Epoch: 17 [2560/35700] Loss: 0.002642 Acc: 1.0000
Train Epoch: 17 [3840/35700] Loss: 0.008276 Acc: 1.0000
Train Epoch: 17 [5120/35700] Loss: 0.000711 Acc: 1.0000
Train Epoch: 17 [6400/35700] Loss: 0.006094 Acc: 1.0000
Train Epoch: 17 [7680/35700] Loss: 0.002374 Acc: 1.0000
Train Epoch: 17 [8960/35700] Loss: 0.007357 Acc: 1.0000
Train Epoch: 17 [10240/35700] Loss: 0.009054 Acc: 1.0000
Train Epoch: 17 [11520/35700] Loss: 0.001672 Acc: 1.0000
Train Epoch: 17 [12800/35700] Loss: 0.010198 Acc: 1.0000
Train Epoch: 17 [14080/35700] Loss: 0.004164 Acc: 1.0000
Train Epoch: 17 [15360/35700] Loss: 0.007825 Acc: 1.0000
Train Epoch: 17 [16640/35700] Loss: 0.001238 Acc: 1.0000
Train Epoch: 17 [17920/35700] Loss: 0.002996 Acc: 1.0000
Train Epoch: 17 [19200/35700] Loss: 0.004095 Acc: 1.0000
Train Epoch: 17 [20480/35700] Loss: 0.034852 Acc: 0.9844
Train Epoch: 17 [21760/35700] Loss: 0.018262 Acc: 0.9844
Train Epoch: 17 [23040/35700] Loss: 0.003957 Acc: 1.0000
Train Epoch: 17 [24320/35700] Loss: 0.013612 Acc: 0.9922
Train Epoch: 17 [25600/35700] Loss: 0.002405 Acc: 1.0000
Train Epoch: 17 [26880/35700] Loss: 0.013208 Acc: 1.0000
Train Epoch: 17 [28160/35700] Loss: 0.005877 Acc: 1.0000
Train Epoch: 17 [29440/35700] Loss: 0.001442 Acc: 1.0000
Train Epoch: 17 [30720/35700] Loss: 0.003060 Acc: 1.0000
Train Epoch: 17 [32000/35700] Loss: 0.007964 Acc: 1.0000
Train Epoch: 17 [33280/35700] Loss: 0.001349 Acc: 1.0000
Train Epoch: 17 [34560/35700] Loss: 0.001601 Acc: 1.0000
	Test set: Average loss: 0.0406, Accuracy: 6228/6300 (99%)
Train Epoch: 18 [1280/35700] Loss: 0.007855 Acc: 1.0000
Train Epoch: 18 [2560/35700] Loss: 0.013239 Acc: 0.9922
Train Epoch: 18 [3840/35700] Loss: 0.003596 Acc: 1.0000
Train Epoch: 18 [5120/35700] Loss: 0.010549 Acc: 1.0000
Train Epoch: 18 [6400/35700] Loss: 0.001103 Acc: 1.0000
Train Epoch: 18 [7680/35700] Loss: 0.009002 Acc: 0.9922
Train Epoch: 18 [8960/35700] Loss: 0.002198 Acc: 1.0000
Train Epoch: 18 [10240/35700] Loss: 0.026013 Acc: 0.9922
Train Epoch: 18 [11520/35700] Loss: 0.006125 Acc: 1.0000
Train Epoch: 18 [12800/35700] Loss: 0.014629 Acc: 0.9922
Train Epoch: 18 [14080/35700] Loss: 0.001693 Acc: 1.0000
Train Epoch: 18 [15360/35700] Loss: 0.003779 Acc: 1.0000
Train Epoch: 18 [16640/35700] Loss: 0.010631 Acc: 0.9922
Train Epoch: 18 [17920/35700] Loss: 0.017860 Acc: 0.9922
Train Epoch: 18 [19200/35700] Loss: 0.026382 Acc: 0.9922
Train Epoch: 18 [20480/35700] Loss: 0.001608 Acc: 1.0000
Train Epoch: 18 [21760/35700] Loss: 0.003383 Acc: 1.0000
Train Epoch: 18 [23040/35700] Loss: 0.009806 Acc: 0.9922
Train Epoch: 18 [24320/35700] Loss: 0.000895 Acc: 1.0000
Train Epoch: 18 [25600/35700] Loss: 0.009932 Acc: 1.0000
Train Epoch: 18 [26880/35700] Loss: 0.021312 Acc: 0.9844
Train Epoch: 18 [28160/35700] Loss: 0.000664 Acc: 1.0000
Train Epoch: 18 [29440/35700] Loss: 0.007818 Acc: 1.0000
Train Epoch: 18 [30720/35700] Loss: 0.001943 Acc: 1.0000
Train Epoch: 18 [32000/35700] Loss: 0.023076 Acc: 0.9922
Train Epoch: 18 [33280/35700] Loss: 0.002365 Acc: 1.0000
Train Epoch: 18 [34560/35700] Loss: 0.003900 Acc: 1.0000
	Test set: Average loss: 0.0420, Accuracy: 6229/6300 (99%)
Train Epoch: 19 [1280/35700] Loss: 0.000729 Acc: 1.0000
Train Epoch: 19 [2560/35700] Loss: 0.001942 Acc: 1.0000
Train Epoch: 19 [3840/35700] Loss: 0.006471 Acc: 1.0000
Train Epoch: 19 [5120/35700] Loss: 0.009913 Acc: 1.0000
Train Epoch: 19 [6400/35700] Loss: 0.008558 Acc: 0.9922
Train Epoch: 19 [7680/35700] Loss: 0.005573 Acc: 1.0000
Train Epoch: 19 [8960/35700] Loss: 0.013726 Acc: 0.9922
Train Epoch: 19 [10240/35700] Loss: 0.004432 Acc: 1.0000
Train Epoch: 19 [11520/35700] Loss: 0.007421 Acc: 1.0000
Train Epoch: 19 [12800/35700] Loss: 0.001643 Acc: 1.0000
Train Epoch: 19 [14080/35700] Loss: 0.000880 Acc: 1.0000
Train Epoch: 19 [15360/35700] Loss: 0.003151 Acc: 1.0000
Train Epoch: 19 [16640/35700] Loss: 0.002848 Acc: 1.0000
Train Epoch: 19 [17920/35700] Loss: 0.004413 Acc: 1.0000
Train Epoch: 19 [19200/35700] Loss: 0.008243 Acc: 1.0000
Train Epoch: 19 [20480/35700] Loss: 0.006476 Acc: 1.0000
Train Epoch: 19 [21760/35700] Loss: 0.004576 Acc: 1.0000
Train Epoch: 19 [23040/35700] Loss: 0.015674 Acc: 0.9922
Train Epoch: 19 [24320/35700] Loss: 0.004907 Acc: 1.0000
Train Epoch: 19 [25600/35700] Loss: 0.003089 Acc: 1.0000
Train Epoch: 19 [26880/35700] Loss: 0.001808 Acc: 1.0000
Train Epoch: 19 [28160/35700] Loss: 0.001431 Acc: 1.0000
Train Epoch: 19 [29440/35700] Loss: 0.005981 Acc: 1.0000
Train Epoch: 19 [30720/35700] Loss: 0.010392 Acc: 0.9922
Train Epoch: 19 [32000/35700] Loss: 0.000989 Acc: 1.0000
Train Epoch: 19 [33280/35700] Loss: 0.010944 Acc: 1.0000
Train Epoch: 19 [34560/35700] Loss: 0.002529 Acc: 1.0000
	Test set: Average loss: 0.0422, Accuracy: 6228/6300 (99%)

In [27]:

test

Out[27]:

Unnamed: 0

pixel0

pixel1

pixel2

pixel3

pixel4

pixel5

pixel6

pixel7

pixel8

...

pixel774

pixel775

pixel776

pixel777

pixel778

pixel779

pixel780

pixel781

pixel782

pixel783

0

57808

0

0

0

0

0

0

0

0

0

...

0

0

0

0

0

0

0

0

0

0

1

4960

0

0

0

0

0

0

0

0

0

...

0

0

0

0

0

0

0

0

0

0

2

35755

0

0

0

0

0

0

0

0

0

...

0

0

0

0

0

0

0

0

0

0

3

15543

0

0

0

0

0

0

0

0

0

...

0

0

0

0

0

0

0

0

0

0

4

48968

0

0

0

0

0

0

0

0

0

...

0

0

0

0

0

0

0

0

0

0

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

17995

53718

0

0

0

0

0

0

0

0

0

...

0

0

0

0

0

0

0

0

0

0

17996

78

0

0

0

0

0

0

0

0

0

...

0

0

0

0

0

0

0

0

0

0

17997

33373

0

0

0

0

0

0

0

0

0

...

0

0

0

0

0

0

0

0

0

0

17998

36134

0

0

0

0

0

0

0

0

0

...

0

0

0

0

0

0

0

0

0

0

17999

54021

0

0

0

0

0

0

0

0

0

...

0

0

0

0

0

0

0

0

0

0

18000 rows × 785 columnsIn [50]:

X_test = torch.tensor(test.iloc[:,1:].values / 255,dtype=torch.float)

In [51]:

X_test

Out[51]:

tensor([[0., 0., 0.,  ..., 0., 0., 0.],
        [0., 0., 0.,  ..., 0., 0., 0.],
        [0., 0., 0.,  ..., 0., 0., 0.],
        ...,
        [0., 0., 0.,  ..., 0., 0., 0.],
        [0., 0., 0.,  ..., 0., 0., 0.],
        [0., 0., 0.,  ..., 0., 0., 0.]])

In [52]:

best_model = TOBIGS(input_dims=784, n_hiddens=[256, 256], n_class=10)
best_model.load_state_dict(torch.load('./best3-14.pth'))
best_model.cuda()
best_model.eval()
X_test = Variable(X_test.cuda())
pred = best_model(X_test)
Sequential(
  (fc1): Linear(in_features=784, out_features=256, bias=True)
  (relu1): ReLU()
  (drop1): Dropout(p=0.2, inplace=False)
  (fc2): Linear(in_features=256, out_features=256, bias=True)
  (relu2): ReLU()
  (drop2): Dropout(p=0.2, inplace=False)
  (out): Linear(in_features=256, out_features=10, bias=True)
)

In [57]:

sub = pd.read_csv("sample_submission.csv")

In [61]:

sub["Category"] = pred.argmax(axis=1).cpu().numpy()

In [65]:

sub.to_csv("torch_pred.csv")
PreviousAdvanced Neural Net (2)Next자연어 처리(NLP)

Last updated 5 years ago

Was this helpful?

' 에 저장되어 있는 weight을 가져와서 layer에 initailization.In [18]:

http://ml.cs.tsinghua.edu.cn/~chenxi/pytorch-models/mnist-b07bb66b.pth