CNN Alexnet

12기 이세윤

AlexNet

  • Local Response Normarlization

  • Dropout (비율 0.5)

  • Stochastic Gradient Descent Optimizer

In [1]:

from google.colab import drive
drive.mount('/content/drive')
Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3aietf%3awg%3aoauth%3a2.0%3aoob&response_type=code&scope=email%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdocs.test%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fpeopleapi.readonly

Enter your authorization code:
··········
Mounted at /content/drive

Pytorch

import torch.nn as nn
import torch.utils.model_zoo as model_zoo
class AlexNet(nn.Module):

    def __init__(self, num_classes=1000):
        super(AlexNet, self).__init__()
        self.features = nn.Sequential(
            ## [Layer 1] Convolution 
            # Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0)
            nn.Conv2d(3, 96, kernel_size=11, stride=4, padding=0),
            nn.ReLU(inplace=True),
            nn.LocalResponseNorm(size=5, alpha=0.0001, beta=0.75),
            
            ## [Layer 2] Max Pooling 
            nn.MaxPool2d(kernel_size=3, stride=2),
            
            ## [Layer 3] Convolution 
            nn.Conv2d(96, 256, kernel_size=5, stride=1, padding=2),
            nn.ReLU(inplace=True),
            nn.LocalResponseNorm(size=5, alpha=0.0001, beta=0.75),
            
            ## [Layer 4] Max Pooling
            nn.MaxPool2d(kernel_size=3, stride=2),
            
            ## [Layer 5] Convolution
            nn.Conv2d(256, 384, kernel_size=3, stride=1, padding=1),
            nn.ReLU(inplace=True),
            
            ## [Layer 6] Convolution
            nn.Conv2d(384, 384, kernel_size=3, stride=1, padding=1),
            nn.ReLU(inplace=True),
            
            ## [Layer 7] Convolution
            nn.Conv2d(384, 256, kernel_size=3, stride=1, padding=1),
            nn.ReLU(inplace=True),
            
            ## [Layer 8] Max Pooling
            nn.MaxPool2d(kernel_size=3, stride=2),
        )
        
        self.classifier = nn.Sequential(
            ## [Layer 9] Fully Connected Layer
            nn.Dropout(),
            nn.Linear(256 * 6 * 6, 4096),
            nn.ReLU(inplace=True),
            
            ## [Layer 10] Fully Connected Layer
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(inplace=True),
            
            ## [Layer 11] Fully Connected Layer
            nn.Linear(4096, num_classes),
        )

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), 256 * 6 * 6)
        x = self.classifier(x)
        return x

In [4]:

Keras

In [5]:

In [7]:

In [ ]:

In [9]:

MNIST Data에 적용해보기

In [ ]:

In [11]:

In [12]:

In [ ]:

In [ ]:

In [15]:

In [16]:

In [17]:

Out[17]:

In [18]:

Test Accuracy 0.9855로 꽤 좋은 성능을 보이고 있네요!!

Last updated

Was this helpful?