📔
Tobigs
  • Who we are
  • Machine Learning
    • 데이터 전처리와 시각화
    • KNN을 통한 Parameter Tuning
    • Navie Bayes 방법론
    • 앙상블
    • 회귀분석
      • 선형 회귀분석 구현(Sklearn,Numpy) (1)
      • 선형 회귀분석 구현(Sklearn,Numpy) (2)
    • 로지스틱 회귀분석
      • Gradient Decent를 이용한 로지스틱 회귀 구현 (1)
      • Gradient Decent를 이용한 로지스틱 회귀 구현 (2)
    • 클러스터링 (군집분석)
      • 클러스터링 실습 (1) (EDA,Sklearn)
      • 클러스터링 실습 (2)(EDA,Sklearn)
      • 클러스터링 연구 (DigDeep)
    • 의사결정나무 (Decision Tree) 구현
      • Python을 이용한 Decision Tree (1)
      • Python을 이용한 Decision Tree (2)
      • Python을 이용한 Decision Tree (3)
      • Python을 이용한 Decision Tree (4)
    • 서포트 벡터 머신(SVM) 방법론
      • Python을 이용한 SVM (1)
      • Python을 이용한 SVM (2)
    • 차원 축소
      • Python을 이용한 차원 축소 실습 (1)
      • Python을 이용한 차원 축소 실습 (2)
    • 머신러닝 실습
      • Python을 이용한 실전 머신러닝 (1)
      • Python을 이용한 실전 머신러닝 (2)
  • Deep Learning
    • 신경망 기초
      • Neural Net Basic (1)
      • Neural Net Basic (2)
    • 신경망 심화
      • Advanced Neural Net (1)
      • Advanced Neural Net (2)
      • Advanced Neural Net (3)
    • 자연어 처리(NLP)
      • Natural Language Processing Basic
    • 이미지 처리(Computer Vision)
      • CNN Alexnet
      • (ResNet)Deep Residual Learning for Image Recognition 논문 리뷰
      • (GAN)Generative Adversarial Nets 논문 리뷰
    • 강화학습 (Reinforcement Learning)
      • Reinforcement Learning(1)
      • Reinforcement Learning(2)
  • Etc
    • Class와 객체지향프로그래밍(Python)
      • Python을 이용한 객체 지향 프로그래밍 (1)
      • Python을 이용한 객체 지향 프로그래밍 (2)
    • Crawling
Powered by GitBook